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Abstract 
 

This Article documents the methodology used to compile a transient heat transfer simulation with the goal of calculating the time to full 

solidification or any specified temperature of a metal casting, this simulation may serves as a confirmation of Chvorinov's rule, furthermore 

the simulation will identify the heat transfer topography, allowing the user to identify the location of possible solidification errors, however 
for the purpose of simplification, only the liquid phase cooling of pure iron will be considered in this report. Euler methods will be discussed 

with special attention paid to explicit forward approximation and how Gaussian error can be used to simplify the simulation, in an attempt 

to reduce processing time. A look at the advantages and disadvantages of using this method will be considered and explanations given the 

decisions taken in the methodology of the simulation, the use of software will be discussed. The article will conclude with a look at the other 
applications for this simulation as well as the limits of this simulation. 
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1. Introduction 
 

Finite Difference Methods (FDM) are amongst the oldest and 

simplest methods for solving differential equations [5], which 

when combined with more complex mathematics and a user 
interface are packaged and sold to foundries in the form of 

Magmasoft, Flow3D or any of a number of excellent simulation 

packages. However the cost of many of these packages and non-

technical nature of these software packages make them inadequate 
to conduct numerical experiments on an academic level. On the 

other side of this argument, one could say that it is not realistic to 

expect a degree level engineer or foundry technician to write a 

program in FORTRAN or C++ to analyse a real world heat transfer 

and solidification problem. This report aims to find a middle 

ground between the Doctorate mathematician and engineering 
student, where an accurate FDM model can be setup without the 

need to learn a new programming language. 

Chvorinov’s rule calculates time to solidification of a casting 

based on the mold constant, volume of casting and surface area of 
casting [4], this report will discuss how an FDM simulation may 

provide additional info. It is possible to represent a 3D object in 2D 

by using a symmetrical through the object and dividing this into a 

mesh (trial and error allows the user to balance accuracy of the 
system with computational requirements by adjusting the size of 

this mesh) however there is a saturation point where the mesh will 

insignificantly improve accuracy with a significant increase in 

processing time [1]. To highlight this, the article will first consider 
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the theory behind the simulation and setting up of the simulation. 

Microsoft Excel, is a widely used software package capable of non-

linear mathematics, able to run loops for solving complex systems 
or differential equations and presenting results graphically without 

the need for a post-processor the simulation will show how using 

an explicit approach each result is output to the next time step 

where the same forward approximation is applied and so on, until 
the pre-defined time is reached, or model is solidified. The 

simulation model may be downloaded from: 

https://drive.google.com/file/d/0B5C8Alae_Y21VDc5YlVTREZi

VGM/edit?usp=sharing.  
Finally conclusions about the results will be drawn and the 

accuracy of the results evaluated before final remarks and 

conclusions are made. 

 
 

2. Theory 
 

Two separate but equally important areas were used to create this 
simulation, these were: Transient heat transfer theory and explicit Finite 
difference theorems.  

 

2.1. Transient Heat Theory 
 
The Biot number is a dimensionless relation between conduction 

through a body and convection at the surface of that body. It can be 
viewed as a criterion for heat transfer [3]. A Biot number of less than 0.1 
may be modelled by simple lumped capacitance model [6]. A Biot 
number greater than 0.1 indicates that heat gradients occur within the 
body and hence more complicated transient heat equations are required 
to evaluate such a system.  

 

𝐵𝑖 =
ℎ𝑉

𝑘𝐴
 (1) 

 
(Bi) Biot Number, (h) heat transfer coefficient, (V) volume of body, 
(k) thermal conductivity, (A) body surface area. 
 
Fig. 1 shows a generalized solidification curve of a pure metal, 

transient heat transfer in metal [8] solidification must incorporate 3 
stages, liquid, mushy & solid. In a pure metal, latent heating remains at a 
constant temperature, in reality this is seldom the case the diagram also 

ignores undercooling. For the purpose of simplifying this report the afore 
mentioned factors will not be included in the methodology. 

 
 

2.2. Finite difference method 
 
Fourier heat laws and integration of this law into various forms of 

heat transfer has been covered extensively in literature, to maintain 
simplicity the author will focus only on the applied formula. By looking 

at each mesh cell as a semi-infinite solid, one may use formula (2) [7], 
applying Laplace transforms results in formula (3) which provides the 
user with a temperature change in the cell over a certain number of time-
steps. Small cells sizes and shorter time-steps provide more accurate 
results however large models are processor intensive and a balance 
should be found between accuracy and simulation time. 

 
𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
) =

1

𝛼
(
𝜕𝑇

𝜕𝑡
) (2) 

 
Fig. 1. Typical coolling curve for metal solidification,  

neglecting undercooling [8] 
 

𝑇(𝑥, 𝑡) = 𝑇0erf(
𝑥

2√𝛼𝑡
) (3) 

 

𝑇−𝑇0

𝑇1−𝑇0
= 1 −

2

√𝜋
∫ 𝑒−𝑠

2
𝑑𝑠

𝑥

2√𝛼𝑡

0
 (4) 

 

𝛼 =
𝑘

𝑐𝑝𝜌
 (5) 

where s = 
t

x

2

, argument of error function erf  

Thermal diffusivity (𝛼) is the result of thermal conductivity (k), 

specific heat (𝑐𝑝) and density (𝜌). Each cell is subject to the following 

initial conditions at the beginning of each time step.  
 

Specific heat varies according to melt temperature, while the author 
will only consider specific heat in the liquid phase, if it is important to 
understand that this plays a significant role in calculating time for full 
solidification, where latent heating is considered (See specific heat range 
below for liquid, mushy and solid phases). 

 

𝑐(𝑇) =

{
 
 

 
 𝑐𝐿                            𝑇1 > 𝑇𝐿

𝐶𝑝 +
𝑄

𝑇𝐿 − 𝑇𝑠
                 𝑇𝑠 ≤ 𝑇1 ≤ 𝑇𝐿

𝑐𝑠                            𝑇𝑠 < 𝑇1

 

 
The change in temperature is considered in a 2D plane, hence x and 

y vectors are considered separately and consolidated using an FDM star 
node method i.e. each node expresses the average temperature of a cell, 
this temperature is a function of the average temperatures of the four 
nodes adjacent to it, these four nodes are in turn are effected by the 4 

 
𝑇(𝑥, 0) = 𝑇0 

𝑇(𝑥, 𝑡) = 𝑇1 
𝑇(𝑥 → ∞, 𝑡) = 𝑇0 

 

Fig. 2. Initial boundary conditions which will be 
considered with equation 3 
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nodes adjacent to each of them. This redundancy is addressed by 
systematic dumping of time-step results, this will be explained in the 
methodology.  

 

 
Fig. 3. Star configuration, points 1,2,3,4 represent the cell 

temperature of adjacent cells [7] 

 
Boundary conditions are also considered the interface between the 

metal and mold for example alters the heat profile as the metal cools the 
mold wall will increase in temperature, however the boundary 
temperature will not stagnate at a median between the mold and melt 
initial temperatures but rather once the temperature gradients has 
stabilized the overall temperature will continue to decrease until ambient 
temperature is reached within the mold and melt.  

 

𝑇𝑠 =
𝑚𝐴𝑇𝐴 +𝑚𝐵𝑇𝐵
𝑚𝐴 +𝑚𝐵

 

 

𝑚 = √𝑘𝑝𝐶𝑝 

 
Fig. 4. Temperature gradient between melt and mold, the interface 

point changes in the y direction also over time [2] 

 

3. Simulation 
 

As expressed earlier, Microsoft Excel will be used to solve this 
example problem due to its general availability, this report uses Microsoft 
Office 2013, any version may be used however it must be noted that 
versions older than 2010 do not include the error function (erf) as part of 
its solver. 

 

A 275x275 mesh was drawn, with a cell size of 2mmx2mm. Cells 
are separated into 4 sections, melt, boundary, insulation and mold. Eleven 
separate sheets are used to describe the problem these were “DATA”, this 
includes all material properties for the mold, insulation and melt. The 
“DIM” sheet separates the mesh into distinct parts by assigning a number 

to each part (Melt = 1, Boundary = 2, and so on) this sheets is used to 
ensure that each cell type uses the correct formula during simulation. 
“INITIAL” sets the starting temperature of the simulation, these values 
are set in the “DATA” sheet and determine the pouring temperature & 
ambient temperature.     

 

 
Fig. 5. High density mesh view of model, the right side may be 

considered symmetric thus the mesh count may be halved 
and appropriate mirrored boundary conditions 

added the right most cells 

To run a simulation in excel a MACRO is required which loops the 
equation through the time-steps, the “DUMP” sheet is used to address 
redundancy of the calculated, i.e. a solution cannot be used as input data 

in the same formula used to calculate it (see Fig. 6). A macro script (see 

linked simulation spreadsheet) specifies the cell co-ordinates for the 
simulation, dumps the results to the “DUMP” sheet, updates “AVE” 
visualization sheet & runs each timestep concurrent to one another 
immediately after the all sheet calculations are complete. 

 

 
Fig. 6. Graphical representation of how redundancy 

is overcome using "dump data" 

Formula (3) is then applied in 4 directions in the sheets “T(x,t) +”, 
“T(x,t) –“, “T(y,t) +” & “T(y,t) –“ before “AVE” sheet applies the 5 point 

node (see Fig. 3) to calculate the average temperature of the node, these 

results are then added to the “DUMP” sheet as 𝑇0, i.e. acts as a new initial 
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temperature for the time-step.  Using this approach, Fourier number, heat 
transfer distance (x value in “DATA”) and thermal diffusivity remain 
constant thus the error remains constant for all time steps during heat 
transfer in the liquid phase. For simplicity specific heat of iron (used in 
this example) remains constant above 900°C and changes are viewed as 

being insignificant.   
The “AVE” sheet consolidates all information. Adding conditional 

formatting to the sheet with a colour scale visualizes temperature 
gradients, Microsoft Excel is also able to give the user a visualization of 
the problem. Running the “start” macro begins the simulation. 

 

 
Fig. 7. Conditional formating illustrates temperature gradient 

changes after each time-step 

The simulation may be downloaded from: 
https://drive.google.com/file/d/0B5C8Alae_Y21VDc5YlVTREZiVG

M/edit?usp=sharing as a free template for transient heat modelling. 

 

 

4. General remarks & Conclusion 
 

The purpose of this report was to simplify 2D heat transfer using a 

simple finite difference method and applying this to a 2D mesh. The 
article describes the general methodology behind applying this theory 

to Microsoft Excel, a link to the spreadsheet can be found below. As 

explained above this article only sets out to lay the foundation for 2D 

transient heat transfer simulation, the addition of latent heat and 

variable specific heat into the governing formulas will increase 

accuracy and will allow a full solidification model to be completed.  
In future the author would like to add volume change to the 

simulation, this will allow the user to see cavitation and riser funnelling. 

However this can all be added by future users for a more accurate 

model.  
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