PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of an electromagnetic twisted Gaussian Schell-model array beam propagating in anisotropic atmosphere turbulence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of anisotropic atmosphere turbulence on propagation characteristics of an electromagnetic twisted Gaussian Schell-model array (EM TGSMA) beam is investigated. An analytical expression for the cross-spectral density function of such beam propagating through anisotropic turbulent atmosphere is derived and used to explore the evolutionary behavior of the spectral intensity, degree of polarization (DOP) and degree of coherence (DOC). An example illustrates the fact that twisted strength and anisotropic turbulent factors have an important impact on the behavior of spectral density, DOC and DOP, in particular. The rotation angle of the array beams can also be controlled by adjusting twisted strength. Furthermore, strong anisotropic turbulence was also found to cause significant mergence of the array beams. Our results might be beneficial for free-space communications of the partially coherent beams endowed with twist.
Czasopismo
Rocznik
Strony
639--654
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • School of Intelligent Manufacturing and Energy Engineering, Jiang-Xi University of Engineering, Xinyu, 33800, Jiangxi, China
autor
  • College of Science, Jiang-Xi University of Engineering, Xinyu, 33800, Jiangxi, China
  • Department of Physics, Long Dong University, Qingyang, Gansu, 745000, China
autor
  • College of Science, Jiang-Xi University of Engineering, Xinyu, 33800, Jiangxi, China
autor
  • College of Science, Jiang-Xi University of Engineering, Xinyu, 33800, Jiangxi, China
Bibliografia
  • [1] SIMON R., MUKUNDA N., Twisted Gaussian Schell-model beams, Journal of the Optical Society of America A 10(1), 1993, pp. 95–109, DOI: 10.1364/JOSAA.10.000095.
  • [2] SERNA J., MOVILLA J.M., Orbital angular momentum of partially coherent beams, Optics Letters 26(7), 2001, pp. 405–407, DOI: 10.1364/OL.26.000405.
  • [3] ZHAO C., CAI Y., KOROTKOVA O., Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams, Optics Express 17(24), 2009, pp. 21472–21487, DOI: 10.1364/OE.17.021472.
  • [4] WANG F., CAI Y., Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere, Optics Express 18(24), 2010, pp. 24661–24672, DOI: 10.1364/OE.18.024661.
  • [5] ZHANG L., CAI Y., Evolution properties of a twisted Gaussian Schell-model beams in a uniaxial crystal, Journal of Modern Optics 58(14), 2011, pp. 1224–1232, DOI: 10.1080/09500340.2011.599503.
  • [6] LIU L., HUANG Y., CHEN Y., GUO L., CAI Y., Orbital angular moment of an electromagnetic Gaussan Schell-model beams with a twist phase, Optics Express 23(23), 2015, pp. 30283–30296, DOI: 10.1364/OE.23.030283.
  • [7] FRIBERG A.T., TERVONEN E., TURUNEN J., Interpretation and experimental demonstration of twisted Gaussian Schell-model beams, Journal of the Optical Society of America A 11(6), 1994, pp. 1818–1826, DOI: 10.1364/JOSAA.11.001818.
  • [8] GORI F., SANTARSIERO M., Devising genuine twisted cross-spectral densities, Optics Letters 43(3), 2018, pp. 595–598, DOI: 10.1364/OL.43.000595.
  • [9] BORGHI R., GORI F., GUATTARI G., SANTARSIERO M., Twisted Schell-model beamss with axial symmetry, Optics Letters 40(19), 2015, pp. 4504–4507, DOI: 10.1364/OL.40.004504.
  • [10] BORGHI R., Twisting partially coherent light, Optics Letters 43(8), 2018, pp. 1627–1630, DOI: 10.1364/OL.43.001627.
  • [11] MEI Z., KOROTKOVA O., Random sources for rotating spectral densities, Optics Letters 42(2), 2017, pp. 255–258, DOI: 10.1364/OL.42.000255.
  • [12] YU H., SHE W., Rotation dynamics of particles trapped in a rotating beams, Journal of the Optical Society of America A 32(1), 2015, pp. 90–100, DOI: 10.1364/JOSAA.32.000090.
  • [13] PATERSON L., MACDONALD M.P., ARLT J., SIBBETT W., BRYANT P.E., DHOLAKIA K., Controlled rotation of optically trapped microscopic particles, Science 292(5518), 2001, pp. 912–914, DOI: 10.1126/science.1058591.
  • [14] WANG F., CAI Y., EYYUBOĞLU H.T., BAYKAL Y., Twist phase‐induced reduction in scintillation of a partially coherent beams in turbulent atmosphere, Optics Letters 37(2), 2012, pp. 184–186, DOI: 10.1364/OL.37.000184.
  • [15] ZILBERMAN A., GOLBRAIKH E., KOPEIKA N.S., VIRTSERA., KUPERSHMIDT I., SHTEMLER Y., Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence, Atmospheric Research 88(1), 2008, pp. 66–77, DOI: 10.1016/j.atmosres.2007.10.003.
  • [16] JOHNSON L.J., GREEN R.J., LEESON M.S., Underwater optical wireless communications: depth-dependent beams refraction, Applied Optics 53(31), 2014, pp. 7273–7277, DOI: 10.1364/AO.53.007273.
  • [17] HOU W., JAROSZ E., WOODS S., GOODE W., WEIDEMANN A., Impacts of underwater turbulence on acoustical and optical signals and their linkage, Optics Express 21(4), 2013, pp. 4367–4375, DOI: 10.1364/OE.21.004367.
  • [18] SHCHEPAKINA E., FARWELL N., KOROTKOVA O., Spectral changes in stochastic light beams propagating in turbulent ocean, Applied Physics B 105, 2011, pp. 415–420, DOI: 10.1007/s00340-011-4626-9.
  • [19] FARWELL N., KOROTKOVA O., Intensity and coherence properties of light in oceanic turbulence, Optics Communications 285(6), 2012, pp. 872–875, DOI: 10.1016/j.optcom.2011.10.020.
  • [20] FU W., ZHANG H., Propagation properties of partially coherent radially polarized doughnut beams in turbulent ocean, Optics Communications 304, 2013, pp. 11–18, DOI: 10.1016/j.optcom.2013.03.029.
  • [21] KOROTKOVA O., FARWELL N., SHCHEPAKINA E., Light scintillation in oceanic turbulence, Waves in Random and Complex Media 22(2), 2012, pp. 260–266, DOI: 10.1080/17455030.2012.656731.
  • [22] ATA Y., BAYKAL Y., Scintillation of optical plane and spherical waves in underwater turbulence, Journal of the Optical Society of America A 31(7), 2014, pp. 1552–1556, DOI: 10.1364/JOSAA.31.001552.
  • [23] BAYKAL Y., BER of asymmetrical optical beams in oceanic and marine atmospheric media, Optics Communications 393, 2017, pp. 29–33, DOI: 10.1016/j.optcom.2017.02.023.
  • [24] KESKIN A., BAYKAL Y., Scintillation and BER analysis of cosine and cosine-hyperbolic-Gaussian beams in turbulent ocean, Applied Optics 60(24), 2021, pp. 7054–7063, DOI: 10.1364/AO.428840.
  • [25] LU L., JI X. L., BAYKAL Y., Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence, Optics Express 22(22), 2014, pp. 27112–27122, DOI: 10.1364/OE.22.027112.
  • [26] FU W., CAO P., Second-order statistics of a radially polarized partially coherent twisted beams in a uniaxial crystal, Journal of the Optical Society of America A 34(9), 2017, pp. 1703–1710, DOI: 10.1364/JOSAA.34.001703.
  • [27] FU W., ZHENG X., Influence of anisotropic turbulence on the second-order statistics of a general-type partially coherent beam in the ocean, Optics Communications 438, 2019, pp. 46–53, DOI: 10.1016/j.optcom.2018.12.089.
  • [28] CUI L., XUE B., ZHOU F., Generalized anisotropic turbulence spectra and applications in the optical waves’ propagation through anisotropic turbulence, Optics Express 23(23), 2015, pp. 30088–30103, DOI: 10.1364/OE.23.030088.
  • [29] GALPERIN B., SUKORIANSKY S., DIKOVSKAYA. N., READ P.L., YAMAZAKI Y.H., WORDSWORTH R., Anisotropic turbulence and zonal jets in rotating flows with a β-effect, Nonlinear Processes in Geophysics 13(1), 2006, pp. 83–98, DOI: 10.5194/npg-13-83-2006.
  • [30] ANDREWS L.C., PHILLIPS R.L., CRABBS R., Propagation of a Gaussian-beams wave in general anisotropic turbulence, Proc. SPIE 9224, Laser Communication and Propagation through the Atmosphere and Oceans III, (3 October 2014), article no. 922402, DOI: 10.1117/12.2061892.
  • [31] BERGER V., GAUTHIER-LAFAYE O., COSTARD E., Photonic band gaps and holography, Journal of Applied Physics 82(1), 1997, pp. 60–64, DOI: 10.1063/1.365849.
  • [32] CAMPBELL M., SHARP D.N., HARRISON M.T., DENNING R.G., TURBERFIELD A.J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 2000, pp. 53–56, DOI: 10.1038/35003523.
  • [33] BLOCH I., Ultracold quantum gases in optical lattices, Nature Physics 1, 2005, pp. 23–30, DOI: 10.1038/nphys138.
  • [34] MACDONALD M.P., SPALDING G.C., DHOLAKIA K., Microfluidic sorting in an optical lattice, Nature 426, 2003, pp. 421–424, DOI: 10.1038/nature02144.
  • [35] ZHENG S., HUANG J., JI X., CHENG K., WANG T., Rotating anisotropic Gaussian Schell-model array beams, Optics Communications 484, 2021, article no. 126684, DOI: 10.1016/j.optcom.2020.126684.
  • [36] WAN L., ZHAO D., Twisted Gaussian Schell-model array beams, Optics Letters 43(15), 2018, pp. 3554–3557, DOI: 10.1364/OL.43.003554.
  • [37] ZHOU Y., ZHAO D., Statistical properties of electromagnetic twisted Gaussian Schell-model array beams during propagation, Optics Express 27(14), 2019, pp. 19624–19632, DOI: 10.1364/OE.27.019624.
  • [38] TOSELLI I., AGRAWAL B., RESTAINO S., Light propagation through anisotropic turbulence, Journal of the Optical Society of America A 28(3), 2011, pp. 483–488, DOI: 10.1364/JOSAA.28.000483.
  • [39] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5–6), 2003, pp. 263–267, DOI: 10.1016/S0375-9601(03)00684-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e887dd6-5352-4ae3-b761-8dd5e3ef00fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.