PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equalisation of archival microscopic images from immunohistochemically stained tissue sections

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of image equalisation that reduces non-uniformity of light distribution caused by optical devices and dust on camera sensors is presented. The method explores non-uniformity which occurs in archival images captured by a typical optical set which consists of a light microscope and a digital camera. A sufficient number of images with low density of foreground objects has been used to extract a global map of non-uniformity of the particular microscope and camera. The proposed method consists of two steps: – (1) extraction of the map of non-uniformity based upon a set of chosen images and – (2) correction of images acquired by the optical set. The global map is created based upon a modified value layer, the third layer of HSV colour space. The proposed method has been tested on images of immunohistochemically (IHC) stained samples of a biopsy tissue, and it has been validated using an image segmentation method developed earlier. The results of the light distribution equalization, as well as the equalized images segmentation turn out to be more similar to the reference method results (namely the manual counting results), than the results of the original images segmentation. The equalization method can be used for other types of images, but all of them should be acquired by the same optical set.
Twórcy
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland; University of Nottingham, Jubilee Campus, Nottingham, United Kingdom
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland
autor
  • Molecular Biology and Research Section Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
autor
  • Molecular Biology and Research Section Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland
autor
  • Molecular Biology and Research Section Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
Bibliografia
  • [1] Fattaneh A.T., Devilee P. (Eds.): Pathology & Genetics of Tumours of the Breast and Female Genital Organs, 2003, IARCPress, Lyon.
  • [2] Swerdlow S.H., Campo E., Harris N.L. et al. (Eds.): WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon, 2008.
  • [3] Schulerud H., et al.: A review of caveats in statistical nuclear image analysis. Analit. Cell Pathol. 1998, 16, 63–82.
  • [4] Alvaro T., Lejeune M., Salvado M.: Immunohistochemical patterns of reactive microenvironment associated with the clinic-biological behavior in follicular lymphoma patients. J. Clin. Oncol. 2006, 24(34), 5350–5357.
  • [5] Comaniciu D., Meer P.: Cell image segmentation for diagnostic pathology. In Suri J.S., Setarehdan S.K. (Eds.), Advanced algorithmic approaches to medical image segmentation: state-of-the-art application in cardiology, neurology, mammography and pathology, 2001, 541–558.
  • [6] Markiewicz T., Wisniewski P., Osowski S., Patera J., Kozlowski W., Koktysz R.: Comparative analysis of methods for accurate recognition of cells through nuclei staining of KI-67 in neuroblastoma and estrogen/progesterone status staining in breast cancer. Analyt. Quant. Cytl. Histol. 2009, 31(1), 49–62.
  • [7] Markiewicz T., Osowski S., Pater J., Kozlowski W.: Image processing for accurate cell recognition and count on histologic slides. Anal. Quant. Cytol. Histol. 2006, 28(5), 281–291.
  • [8] Lopez C., Lejeune M., Salvedo M.T., Escriva P., Bosh R., Pons L.E., Alvaro T., Roig J., Cugat X., Baucells J., Jaen J.: Automated quantification of immunohistochemical markers with different complexity, Histochem. Cell Biol. 2008, 129(3), 379–287.
  • [9] Rojo M., Bueno G., Slodkowska J.: Review of imaging solutions for integrated quantitative immunohistochemistry in the pathology daily practice. Folia Histochemica et Cytobiologica 2009, 47(3), 349–354.
  • [10] Seidal T., Balaton A., Battifora H.: Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 2001, 25, 1204–1207.
  • [11] Yaziji H. et al.: Diagnostic immunohistochemistry: What can go wrong? Adv. in Anat. Pathol. 2006, 13(5), 238–246.
  • [12] Kruś S., Skrzypek-Fakhoury E.: Clinical Pathology, Wydawnictwo Lekarskie PZWL, Warszawa, 2007 (in Polish).
  • [13] Gil J., Wu H.-S.: Applications of image analysis to anatomic pathology: Realities and promises. Cancer Investigation 2003, 21(6), 950–959.
  • [14] Gil J., Wu H., Wang B. Y.: Image analysis and morphometry in the diagnosis of breast cancer. Microscopy Research and Technique 2002, 59(2), 109–118.
  • [15] Korzynska A., Strojny W., Hoppe A., Wertheim D., Hoser P.: Segmentation of microscope images of living cells. Pat. An. & App. 2007, 10, 301–319.
  • [16] Korzynska A., Hoppe A., Strojny W., Wertheim D.: Investigation of a combined texture and contour method for segmentation of light microscopy cell images. Proc. Second IASTED International Conference on Biomedical Engineering, 2004, 234–239.
  • [17] Korzynska A., Iwanowski M.: Multistage morphological segmentation of bright-field and fluorescent microscopy images. Opto-Electronics Review 2012, 20, 174–186.
  • [18] Koprowski R., Wrobel Z.: The cell structures segmentation. Springer-Verlag, 2005, Advances in Soft Computing, 569–576.
  • [19] Dulewicz A., Pietka D., Juszczak P.: Digital image analysis in research and diagnosis of urinary bladder cancer. In Bladder Cancer: Etymology, Diagnosis and Treatment (ed.) Nilsson W.E. Nova Science Biomedical Books, New York, 2010.
  • [20] Markiewicz T., Osowski S., Patera J., Kozlowski W.: Image processing for accurate cell recognition and count on histologic slides. Analyt. Quant. Cytl. Histol. 2006, 28(5), 281–291.
  • [21] Roux L., Tutac A., Lomenie N., Balensi D., Racoceanu D. et al.: A cognitive virtual microscopic framework for knowledge-based exploration of large microscopic images in breast cancer histopathology. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Ann. Intern. Conf. IEEE, 2009, 3697–3702.
  • [22] Grala B., Markiewicz T., Kozlowski W., Osowski S., Slodkowska J., Papierz W.: New automated image analysis method for the assessment of ki-67 labeling index in meningiomas. Folia Histochemica et Cytobiologica 2009, 47(4), 587–592.
  • [23] Kayser K. et al.: Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology), Diagnostic Pathology, 2008.
  • [24] Kayser K., Radziszowski D., Bzdyl P., Sommer R., Kayser G.: Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the internet. Diagnostic Pathology 2006, 1, 1–10.
  • [25] Kayser K., Radziszowski G., Bzdyl D., Sommer P., Kayser G.: Theory and implementation of an electronic, automated measurement system for images obtained from immunohistochemically stained slides. Anal. Quant. Cytol. Histol. 2006, 28(1), 27–38.
  • [26] Klapper W. et al.: Ki-67 as a prognostic marker in mantle cell lymphoma-consensus guidelines of the pathology panel of the European mcl network. J of Hematopathology 2009, 2, 103–111.
  • [27] Bartels P.H., Montironi R., D. da Silva V., Hamilton P.W.: Thompson D., Vaught L.: Tissue architecture analysis in prostate cancer and its precursor: An innovative approach to computerized histometry. Rur. Urol. 1999, 35, 484–491.
  • [28] Asada N., Amano A., Baba M.: Photometric calibration of zoom lens systems. Proc. Int. Conf. on Pattern Recognition 1996, 186–190.
  • [29] Kang S., Weiss R.: Can we calibrate a camera using an image of a flat textureless lambertian surface? European Conf. on Computer Vision, II, 2000, 640–653.
  • [30] Sawchuk A.A.: Real-time correction of intensity nonlinearities in imaging systems. IEEE Trans. on Computers, 1977, 26(1), 34–39.
  • [31] Yu W.: Practical anti-vignetting methods for digital cameras. IEEE Trans. on Cons. Elect., 2004, 50, 975–983.
  • [32] Korzyńska A., Neuman U., Lopez C., Lejeune M., Bosch R.: The Method of Immunohistochemical Images Standardization. In: R.S. Choras (ed.): Image processing & Communications Challenges 2, AISC 84, Springer-Verlag, Berlin, Heidelberg, 2010, 213–221.
  • [33] Zheng Y., Lin S., Kang S.B.: Single-image vignetting correction. In CVPR, 2006, 1, 461–468.
  • [34] Zheng Y., Yu J., Kang S.B. et al.: Single-image vignetting correction using radial gradient symmetry. In CVPR, IEEE, 2008, 1–8.
  • [35] Goldman D., Chen J.: Vignette and exposure calibration and compensation. In ICCV, 2005, 899–906.
  • [36] Choi H.J., Choi I.H., Cho N.H., Choi H.K.: Colour image analysis for quantifying renal tumor angiogenesis. Analyt. Quant. Cytl. Histol. 2005, 27, 43–51.
  • [37] Litvinov A., Schechner Y.: Addressing radiometric nonidealities: A unified framework. In CVPR, 2005, 52–59.
  • [38] Sternberg S.R.: Biomedical Image Processing. Computer, 1983, 22–34.
  • [39] Iwanowski M.: Morphological methods in digital image processing, AOWEXIT, Warszawa, 2009 (in Polish).
  • [40] Nieniewski M.: Mathematical morphological methods in image processing, PLJ, Warszawa, 1998 (in Polish).
  • [41] Soille P., Iwanowski M.: Morphological Refinement of an Image Segmentation. Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2005, 538–545.
  • [42] Iwanowski M., Serra J.: The morphological-affine object deformation, Mathematical Morphology and its Applications to Signal and Image Processing. Kluwer Academic Publishers, 2000, 81–90.
  • [43] Markiewicz T.: Using matlab software with tomcat server and java platform for remote image analysis in pathology. Diagnostic Pathology 2011, 6(1), 18.
  • [44] Neuman U., Korzyńska A., Lopez C., Lejeune M.: Segmentation of Stained Lymphoma Tissue Section Image. In: E. Pietka, J. Kawa (eds.): Information Technologies in Biomedicine AISC 69, Springer-Verlag, Berlin, Heidelberg, 2010, 101–113.
  • [45] Du X., Dua S.: Segmentation of fluorescence microscopy cell images using unsupervised mining, Open Med. Inform. J. 2010, 4, 41–49.
  • [46] Czajkowska J., Badura P., Pietka E.: 4d segmentation of ewing’s sarcoma in MR images. in Information Technologies in Biomedicine, ser. Advances in Intelligent and Soft Computing, E. Pietka, J. Kawa, Eds. Springer Berlin / Heidelberg, 2010, 69, 91–100.
  • [47] Pham D. et al.: A survey of current methods in medical image segmentation. Ann. Rev. Biomed. Eng. 2000, 2, 315–338.
  • [48] Fu K., Mui J.: A survey on image segmentation, Pattern Recogn. 1981, 13, 1, 3–16.
  • [49] Serra J., Vincent L.: An overview of morphological filtering. Circuit Systems Signal Processing, 1992, 11(1).
  • [50] Serra J.: Image analysis and mathematical morphology. Academic Press 1, 1983.
  • [51] Serra J.: Image analysis and mathematical morphology. Academic Press 2, 1988.
  • [52] Vincent L.: Morphological Greyscale Reconstruction in Image Analysis: Applications and Efficient Algorithms. IEEE Trans. Image Processing 1993, 2(2).
  • [53] Soille P.: Morphological Image Analysis: Principles and Applications. Springer-Verlag. 2004.
  • [54] Wrobel Z., Koprowski R.: Image processing in the MATLAB software, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e86dbb3-2b3d-4815-8c6e-7100220542d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.