PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and positron lifetimes of zirconium modified aluminide coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microstructure of the zirconium modified and non-modified aluminide coatings was examined by the EDS, XRD, TEM and the positron annihilation spectroscopy methods. Both coatings have a double layer structure: β-NiAl phase on the top and γ′-Ni3Al below. Small zirconium nanoparticles were found along grain boundaries in the β-NiAl phase. The positron lifetime in both coatings is the same. The formation of zirconium precipitates neither affects, the number of defects nor the volume diffusion. Zirconium nanoparticles that precipitate along grain boundaries stand against the outward diffusion of Al ions through the coating to the coating/oxygen interface. This “blocking effect” may be responsible for the reduction of the alumina scale growth rate and may delay pore formation on the coating/oxygen interface.
Rocznik
Strony
1150--1155
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszów University of Technology, 2 W Pola Street, 35-959 Rzeszow, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Street, Kraków, Poland
autor
  • Institute of Metallurgy and Materials Sciences, PAS, 25 Reymonta Street, 30-059 Kraków, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Street, Kraków, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszów University of Technology, 2 W Pola Street, 35-959 Rzeszow, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszów University of Technology, 2 W Pola Street, 35-959 Rzeszow, Poland
Bibliografia
  • [1] A. Haynes, Y. Zhang, M.K. Cooley, L. Walker, K.S. Reeves, B.A. Pint, Surf. Coat. Technol. 189 (2004) 153–157.
  • [2] M. Zagula-Yavorska, J. Sieniawski, T. Gancarczyk, Arch. Metall. Mater. 57 (2012) 503–509.
  • [3] M. Zagula-Yavorska, J. Sieniawski, J. Mater. Eng. Perform. 23 (2014) 918–926.
  • [4] J.A. Haynes, K.L. More, B.A. Pint, I.G. Wright, K. Cooley, Y. Zhang, High Temperature Corrosion and Protection of Materials, 5, 2000, pp. 35–42.
  • [5] M. Zagula-Yavorska, M. Pytel, J. Romanowska, J. Sieniawski, J. Mater. Eng. Perform. 24 (2015) 1614–1625.
  • [6] Y. Wang, M. Suneson, G. Sayre, Surf. Coat. Technol. 15 (2011) 1218–1228.
  • [7] B.M. Warnes, Surf. Coat. Technol. 146 (2001) 7–14.
  • [8] G.Y. Kim, L.M. He, J.D. Meyer, A. Quintero, J.A. Haynes, W.Y. Lee, Metall. Mater. Trans. A 35 (2004) 3581–3588.
  • [9] J.A. Nesbitt, B. Nagaraj, J. Williams, Sci. Technol. 4 (2001) 78–92.
  • [10] B. Ning, M. Shamsuzzoha, M.L. Weaver, Surf. Coat. Technol. 200 (2005) 1270–1275.
  • [11] D. Li, H. Guo, D. Wang, T. Zhang, S. Gong, X. Hubin, Corros. Sci. 66 (2013) 125–135.
  • [12] B.A. Nagaraj, J.L. Williams, U.S. Patent 2003;6602356.
  • [13] S. Hamadi, M. Bacos, M. Poulain, A. Seyeux, V. Maurice, P. Marcus, Surf. Coat. Technol. 204 (2009) 756–760.
  • [14] H.B. Guo, D. Wang, H. Peng, S. Gong, H. Xu, Corros. Sci. 78 (2014) 369–377.
  • [15] H. Guo, T. Zhang, S. Wang, S. Gong, Corros. Sci. 53 (2011) 2228–2232.
  • [16] B.A. Pint, J.A. Haynes, T.M. Besman, Surf. Coat. Technol. 205 (2010) 3273–3287.
  • [17] A.H. Heuerw, D.B. Hovis, J.L. Smiałek, B.J. Gleson, Am. Ceram. Soc 94 (2011) 146–153.
  • [18] S. Hamadi, M. Bacos, M. Poulain, S. Zanna, V. Maurice, P. Marcus, Mater. Sci. Forum 595–598 (2008) 95–100.
  • [19] H. Guo, D. Li, L. Zheng, S. Gong, H. Xu, Corros. Sci. 85 (2014) 289–295.
  • [20] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66 (1994) 841–848.
  • [21] S. McGuire, D.J. Keeble, J. Appl. Phys. 100 (2006) 103504–103509.
  • [22] J. De Baerdemaeker, J. Colaux, G. Terwagne, C. Dauwe, Radiat. Phys. Chem. 68 (2003) 605–613.
  • [23] J. Romanowska, M. Zagula-Yavorska, J. Sieniawski, Open J. Metal 3 (2013) 50–54.
  • [24] J. Kansy, Nucl. Instr. Methods A 374 (1996) 235–244.
  • [25] NORAN System SIX Models 200 and 300 User's Handbook, Thermo Electron Corporation, USA, 2005.
  • [26] Z. Bojarski, E. Łągiewka, Rentgenowska analiza strukturalna, PWN, Warszawa, 1988.
  • [27] M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski, Nanoparticles in zirconium-doped aluminide coatings, Mater. Lett. 139 (2015) 50–54.
  • [28] J. Romanowska, M. Zagula-Yavorska, J. Sieniawski, Bull. Mater. Sci. 36 (2013) 1043–1048.
  • [29] T.B. Massalski, American Society for Metals, Metal Park, 1986. p. 140.
  • [30] W. Puff, B. Logar, A.G. Balogh, Acta Mater. 47 (1999) 101–109.
  • [31] M. Kogachi, S. Minamigawa, Y. Shirai, M. Yamaguchi, Scr. Mater. 34 (1996) 243–249.
  • [32] K.G. Lynn, J. Snead, J.J. Hurst, Phys. F: Metal Phys. 10 (1980) 1735–1741.
  • [33] A.J. Bradley, A. Taylor, Proc. R. Soc. A 159 (1937) 56–63.
  • [34] K. Badura-Gergen, H.E. Schaefer, Phys. Rev. B 56 (1997) 3032–3037.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e85d703-6cf4-4998-b891-0f1cb8837961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.