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Abstract. A non-adaptive controller for a class of vehicles is proposed in this paper. The velocity tracking controller is expressed in terms of 
the transformed equations of motion in which the obtained inertia matrix is diagonal. The control algorithm takes into account the dynamics of 
the system, which is included into the velocity gain matrix, and it can be applied for fully actuated vehicles. The considered class of systems 
includes underwater vehicles, fully actuated hovercrafts, and indoor airship moving with low velocity (below 3 m/s) and under assumption that 
the external disturbances are weak. The stability of the system under the designed controller is demonstrated by means of a Lyapunov-based 
argument. Some advantages arising from the use of the controller as well as the robustness to parameters uncertainty are also considered. The 
performance of the proposed controller is validated via simulation on a 6 DOF robotic indoor airship as well as for underwater vehicle model.

Key words: marine vehicle, fully actuated hovercraft, indoor airship, non-adaptive control, quasi-velocities, diagonal inertia matrix.
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are applied also for mobile platform control [45]. The tracking 
control algorithms for aerial indoor blimp using velocity-based 
controller are introduced in [21, 22].

In this paper a velocity control algorithm realized in the 
body-fixed frame for a class of fully actuated vehicles is intro-
duced and discussed. The considered method is recommended 
for control of underwater vehicles, hovercrafts, or indoor air-
ship moving slowly (with linear velocity below 3 m/s) and 
under assumption that the external disturbances are weak (if 
they can be omitted in equations of motion). It means that the 
submarine moves in calm water or the airship flies inside the 
hall. This velocity tracking controller is based on a velocity 
variables transformation arising from the inertia matrix de-
composition. Therefore, the vehicle equations of motion are 
transformed into a velocity space. As a result, the obtained 
differential equations allow us to track the moving object 
velocity. It is noticeable that after the system inertia matrix 
decomposition the obtained controller includes the dynamic 
parameters set of the vehicle. Additionally, each rate is regu-
lated separately in a sense (dynamical couplings are shifted to 
the appropriate velocity variable). One of benefits relies on that 
the system response of the system is fast and the velocity error 
convergence is quick. Consequently, the desired trajectory is 
reached in short time. Another advantage arising from the use 
of the controller is that the gain matrix related to the velocity 
error includes the system parameters highly dependent on the 
vehicle dynamics (for various vehicles the control coefficients 
can be different).

The novelty of the presented strategy is that the nonlinear 
controller is realized after transformation of equations of motion 
arising from the inertia matrix decomposition. Moreover, the 
proposed controller is universal in the following sense. First, 
it is suitable both for 6 DOF and for vehicles moving in the 
horizontal or vertical plane. Second, it can be applied in the 
same general (or reduced to 3 DOF) form for fully actuated 
marine vehicles, hovercrafts, and indoor airships. Third, some 

1. Introduction

The use of robotic marine vehicles, ground vehicles and air 
vehicles for different applications has been growing in the last 
decades. One of their advantages is low cost as compared to full 
scale and fully manned vessels. The setpoint, trajectory tracking 
and path following control strategies for robotic vehicles have 
received increased attention of researchers.

Numerous control algorithms have been proposed for the 
class of vehicles considered here. Tracking strategies related to 
underwater vehicles are presented, e.g., in [1–4]. Some control 
strategies for surface vessel including ships and hovercrafts 
can be found in [5–15]. Tracking controllers useful for marine 
vessels are described also in [16–20]. Referring to the airship 
trajectory tracking problem control algorithms are shown, e.g., 
in [21–24].

There are vehicles which, due to their construction, can be 
regarded as fully actuated. One may refer to the following works 
concerning underwater vehicles [1, 3, 25–29], surface vehicles 
[10, 30, 31, 15], hovercrafts [32, 33], and airships [34–36].

Velocity tracking control algorithms are rather rarely pre-
sented in the robotic literature as far as marine or aerial vehicles 
are concerned. However, tracking control strategies suitable for 
underwater vehicles or surface ships are shown, e.g., in [18, 37]. 
The velocity controllers related to velocity tracking for this class 
of vehicles are given in [38, 39]. The same type of controller 
for underwater vehicles are presented in [40]. The sliding mode 
control based approaches for velocity tracking for unmanned 
surface vessels are considered, e.g., in [6, 41, 42]. Moreover, ve-
locity control algorithms are useful for other mechanical systems 
as unmanned helicopters [43] or quad-rotors [44]. Velocities 
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η 2 R6 is the vector of positions and Euler angles, ν 2 R6 is 
the vector of body-fixed linear and angular velocity compo-
nents, and τ 2 R6 is the control vector. The components of two 
vectors, namely ν = [u, v, w, p, q, r]T and η = [x, y, z, ϕ, θ, ψ]T  
are related to the motion variable in surge, sway, heave, roll, 
pitch, and yaw, respectively. Additionally, J(η) is a 6£6 block 
diagonal transformation matrix between the body-fixed frame 
to the inertial reference frame (usually the earth). The matrix 
J(η) depends on the Euler angles.

Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-diagonal 
elements. In order to obtain equations with a diagonal inertia 
matrix which allows us to design a decoupled controller in the 
sense that each rate can be regulated separately the matrix M 
should be decomposed. In general components of the inertia 
matrix depend on geometry, fluid flow rates and other uncer-
tainties. Moreover, the added mass coefficients are often esti-
mated using experimental studies and empirical relations which 
are not quite accurate. As a result, it should be stated that if 
the matrix M appears to be non-symmetric then it cannot be 
decomposed into a diagonal form and the proposed approach 
is not valid. Thus, the decomposition of the inertia matrix M 
(1) is possible if it is assumed that the matrix is symmetric, 
positive definite and their elements are known. As it arises from 
the literature [18] for a class of marine vehicle models such 
approximation is reasonable. Similarly conclusion can be made 
for indoor airships moving with low velocity.

Remark 2. Note that various moving systems can be described 
using Eqs. (1) and (2). Equations of this type are used for un-
derwater vehicles [46, 2, 25, 47, 48] and for surface vessels 
[49, 7, 50, 8, 51, 11, 12]. However, hovercrafts [5, 52, 32, 53] 
as well as indoor airships [54–57] can be also described by 
these equations.

Introducing now a transformation of rates in the form:

 

Fig. 1. Coordinate system for 6 DOF vehicle

by [22]:

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ, (1)
η̇ = J(η)ν , (2)

where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
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other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
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stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
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tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
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well as indoor airships [43, 44, 63, 64] can be also described
by these equations.
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ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
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Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
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gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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gles.
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metric, and in general, non-diagonal, i.e. it contains off-
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tia matrix M (1) is possible if it is assumed that the matrix is
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where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
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N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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controllers which have simpler form can be deduced from it 
(particular cases of the controller). The stability of the vehicle 
under the controller is shown based on the Lyapunov argument. 
Additionally, the robustness to the system parameter changes 
is considered.

The mathematical model describing the dynamics and ki-
nematics of the class of vehicles is introduced in Section 2. 
The proposed velocity tracking controller is presented and con-
sidered in Section 3. Simulation results for an airship as well 
as for a underwater vehicle model are contained in Section 4. 
Section 5 offers conclusions.

2. Dynamical model of vehicle in terms  
of generalized velocity components

The six DOF dynamical model of the considered here class 
of vehicles (Fig. 1) is expressed in the body-fixed reference 
frame by [18]:
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these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
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for each considered object whether it is acceptable. Besides,
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(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
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η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
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between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
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Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
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often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is
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it arises from the literature [22] for a class of marine vehicle
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12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.
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ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
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η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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where (1) is the vehicle dynamics and (2) is the kinematics. In 
these equations M 2 R6×6 means the inertia matrix including the 
rigid body inertia matrix and the added mass matrix. Moreover, 
two conditions M = MT > 0 and M ̇  = 0 are fulfilled. However, 
we must take into account that vehicles are different. Therefore, 
the condition M ̇  = 0 must be carefully checked for each con-
sidered object whether it is acceptable. Besides, C(ν) 2 R6×6 
is the matrix of Coriolis and centrifugal terms (that satisfies 
C(ν) = –CT(ν), 8ν 2 R6), D(ν) 2 R6×6 is the matrix of hydrody-
namic damping terms (D(ν) > 0, 8ν 2 R6, ν  6= 0), g(η) 2 R6 is 
the vector of gravitational and buoyancy forces and moments, 
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where the appropriate matrices and vectors are given as follows:
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Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ, (1)
η̇ = J(η)ν , (2)

where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ, (1)
η̇ = J(η)ν , (2)

where (1) is the vehicle dynamics and (2) is the kinematics. In
these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
of the inertia matrix depend on geometry, fluid flow rates and
other uncertainties. Moreover, the added mass coefficients are
often estimated using experimental studies and empirical rela-
tions which are not quite accurate. As a result, it should be
stated that if the matrix M appears to be non-symmetric then it
cannot be decomposed into a diagonal form and the proposed
approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is

symmetric, positive definite and their elements are known. As
it arises from the literature [22] for a class of marine vehicle
models such approximation is reasonable. Similarly conclu-
sion can be made for indoor airships moving with low velocity.
Remark 2. Note that various moving systems can be described
using Eqs.(1) and (2). Equations of this type are used for un-
derwater vehicles [3, 13, 26, 34, 46] and for surface vessels [8,
12, 14, 15, 17, 33, 35]. However, hovercrafts [2, 18, 30, 40] as
well as indoor airships [43, 44, 63, 64] can be also described
by these equations.

Introducing now a transformation of rates in the form:

ν = ϒξ , (3)

where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
multiplying both sides by ϒT (as in [32]) we can write:

Mϒξ̇ +C(ν)ϒξ +D(ν)ϒξ +g(η) = τ, (4)
ϒT Mϒξ̇ +ϒTC(ν)ϒξ +ϒT D(ν)ϒξ +ϒT g(η) = ϒT τ. (5)

Grouping now the terms of the equation, the transformed equa-
tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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ent. Therefore, the condition Ṁ = 0 must be carefully checked
for each considered object whether it is acceptable. Besides,
C(ν) ∈ R6×6 is the matrix of Coriolis and centrifugal terms
(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
matrix of hydrodynamic damping terms (D(ν) > 0, ∀ν ∈ R6,
ν �= 0), g(η) ∈ R6 is the vector of gravitational and buoyancy
forces and moments, η ∈ R6 is the vector of positions and Eu-
ler angles, ν ∈ R6 is the vector of body-fixed linear and angu-
lar velocity components, and τ ∈ R6 is the control vector. The
components of two vectors, namely ν = [u, v, w, p, q, r]T and
η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
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these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
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(that satisfies C(ν) = −CT (ν), ∀ν ∈ R6), D(ν) ∈ R6×6 is the
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η = [x, y, z, φ , θ , ψ]T are related to the motion variable in
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tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
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where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.
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the above into account and inserting (3) into (1), and next pre-
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η̇ = J(η)ϒξ , (7)
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lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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these equations M ∈ R6×6 means the inertia matrix including
the rigid body inertia matrix and the added mass matrix. More-
over, two conditions M = MT > 0 and Ṁ = 0 are fulfilled.
However, we must take into account that vehicles are differ-
ent. Therefore, the condition Ṁ = 0 must be carefully checked
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surge, sway, heave, roll, pitch, and yaw, respectively. Addi-
tionally, J(η) is a 6× 6 block diagonal transformation matrix
between the body-fixed frame to the inertial reference frame
(usually the earth). The matrix J(η) depends on the Euler an-
gles.
Remark 1. Recall, that the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off-
diagonal elements. In order to obtain equations with a diag-
onal inertia matrix which allows us to design a decoupled con-
troller in the sense that each rate can be regulated separately
the matrix M should be decomposed. In general components
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approach is not valid. Thus, the decomposition of the iner-
tia matrix M (1) is possible if it is assumed that the matrix is
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well as indoor airships [43, 44, 63, 64] can be also described
by these equations.
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where ϒ is an upper diagonal, invertible matrix with constant
elements it is possible to decompose the matrix M into three
matrices, i.e. M = ϒ−T Nϒ−1. The obtained matrix N is diago-
nal and it contains constant elements on the diagonal.

Calculating the time derivative of ν we have ν̇ =ϒξ̇ . Taking
the above into account and inserting (3) into (1), and next pre-
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tions of motion can be written in the following form:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η) = π, (6)
η̇ = J(η)ϒξ , (7)

where the appropriate matrices and vectors are given as fol-
lows:

N = ϒT Mϒ, (8)
Cξ (ξ ) = ϒTC(ν)ϒ, (9)

Dξ (ξ ) = ϒT D(ν)ϒ, (10)

gξ (η) = ϒT g(η), (11)

π = ϒT τ. (12)

Equations (6) and (3) together with (7) describe the motion of a
vehicle, where N is a diagonal matrix. As it was mentioned in
[31] there are various possible decomposition methods. How-
ever, in this work the Loduha-Ravani method which is related
to the generalized velocity components (GVC) [36] is used (the
obtained matrix ϒ is only an upper triangular matrix containing
ones on the diagonal).

3. Design of decoupled non-adaptive velocity
tracking controller

In this section the general controller which is decoupled in the
sense of the vector of the transformed variables ξ is presented.

3.1. Control algorithm The controller can be used for fully
actuated underwater vehicles, hovercrafts or indoor airships.
Moreover, it is assumed that the vehicle moves, i.e. the airship
is in flight phase or the marine vehicle flows. Other motion
phases are not taken into consideration.
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Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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, (17)

and ν̃ = νd ¡ ν is the velocity error vector (the quantity with 
index d is related to the desired velocity whereas without 
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0, 

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The 
equilibrium point [sT

ξ, zT ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI, and Λ are 
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s, whereas ξr is similar 
to the reference velocity vector defined by Slotine and Li [61]. 
However, because of the presence the matrix ϒ we take here 
in to consideration also dynamics of the system. Moreover, for 
each considered vehicle we should take into account values of 
controlling forces and force moments. Thus, it is necessary to 
check these values for the vehicle.

Proof. The closed-loop system (6, 7) together with the con-
troller (13) can be written as follows:

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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which leads to:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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As a Lyapunov function candidate the following expression is 
proposed:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Calculating the time derivative of the function 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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thus Ṅ = d
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sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
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where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
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for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
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]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)
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s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
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sT
ξ Nsξ +
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zT kIz =
1
2
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Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)
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ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,
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gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.
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thus Ṅ = d
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Recall however (9), that sT
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sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
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where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +
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2

zT kIz =
1
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sT Ms+
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zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d
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s 2 Rn (the matrix C(ν) is a skew-symmetric one) [18]. There-
fore, taking into account (16) we have:
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gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)
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z =
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0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
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tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
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Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +
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L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 (23)

The above result we can write in the following form (using (10)):

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)
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T ]T one can write:
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for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
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is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
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L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3
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where A11 = ϒTD(ν)ϒ + kD and A22 = ΛTkI. Note that the sym-
metric matrix A is positive definite. Thus, assuming λm{A} > 0 
(λm is the minimal eigenvalue of the matrix A) one can find an 
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upper bound of the time derivative. Denoting now x = [sT
ξ, zT ]T 

one can write:
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L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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, (25)

for all t ¸ 0 and x 2 R2

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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.
Therefore, based on the Lyapunov direct method [61], the con-
clusion that the state space origin of the system (6), (3) together 
with the controller (13):

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue. In case of vehicle parameters uncertainty 
we must consider robustness of the proposed control algorithm. 
The sensitivity analysis will be done using the relationships 
between the variables in the given below way.

Taking into account inversion of the relationship (12) and 
(14–17) (note that τ = ϒ–Tπ) the input forces vector τ can be 
rewritten as follows:

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Denoting now νr = νd + Λz, ν ̇ r = ν ̇ d + Λν̃, and s = ν̃ + Λz we 
are able to rewrite the above equation in the form:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Note that comparing (13) we have the relationships:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Thus, we reformulate the Lyapunov function candidate as fol-
lows:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Its time derivative has the form:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Assuming for simplification C = C(ν), D = D(ν), g = g(η) and 
using (29) we receive the given below equation:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Hence, recalling that sTCs = 0 [18] we obtain:

 

Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Non-adaptive velocity tracking controller

Theorem 1. Consider the vehicle dynamic model (6), the kine-
matic relationship (7), and the velocity transformation (3) to-
gether with the following controller:

π = Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz, (13)

where

z =
∫ t

0
ν̃(σ) dσ , (14)

ξr = ϒ−1(νd +Λz), (15)
sξ = ξr −ξ = ϒ−1(ν̃ +Λz), (16)

ṡξ = ξ̇r − ξ̇ = ϒ−1( ˙̃ν +Λν̃), (17)

and ν̃ = νd − ν is the velocity error vector (the quantity with
index d is related to the desired velocity whereas without
the index to the actual velocity), kD = kT

D > 0, kI = kT
I > 0,

Λ = ΛT > 0, and N is a diagonal strictly positive matrix. The
equilibrium point [sT

ξ ,z
T ]T = 0 is globally exponentially stable.

Remark 3. For simplicity we will assume that kD, kI , and Λ are
constant and diagonal. Note also that the quantity sξ is analo-
gous to the virtual velocity error vector s whereas ξr is similar
to the reference velocity vector defined by Slotine and Li [52].
However, because of the presence the matrix ϒ we take here in
to consideration also dynamics of the system. Moreover, for
each considered vehicle we should take into account values of
controlling forces and force moments. Thus, it is necessary to
check these values for the vehicle.

Proof. The closed-loop system (6), (7) together with the
controller (13) can be written as follows:

Nξ̇ +Cξ (ξ )ξ +Dξ (ξ )ξ +gξ (η)

= Nξ̇r +Cξ (ξ )ξr +Dξ (ξ )ξr +gξ (η)+ kDsξ +ϒT kIz (18)

what leads to:

Nṡξ +[Cξ (ξ )+Dξ (ξ )+ kD]sξ +ϒT kIz = 0. (19)

As a Lyapunov function candidate the following expression is
proposed:

L (sξ ,z) =
1
2

sT
ξ Nsξ +

1
2

zT kIz. (20)

Calculating the time derivative of the function L (20) leads to:

L̇ (sξ ,z) = sT
ξ Nṡξ +

1
2

sT
ξ Ṅsξ + ν̃T kIz. (21)

Because the matrices M, and ϒ have only constant elements,
thus Ṅ = d

dt (ϒ
T Mϒ) = 0. Using also the relationship (19) one

gets:

L̇ (sξ ,z) = sT
ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
ξ Cξ (ξ )sξ = (ϒsξ )

TC(ν)(ϒsξ ) =

sTC(ν)s = 0 (assuming s = ϒsξ ) because sTC(ν)s = 0 for all
s ∈ Rn (the matrix C(ν) is a skew-symmetric one) [22]. There-
fore, taking into account (16) we have:

L̇ (sξ ,z) =−sT
ξ [Dξ (ξ )+ kD]sξ − sT

ξ ϒT kIz+ ν̃T kIz

=−sT
ξ [Dξ (ξ )+ kD]sξ − zT ΛT kIz. (23)

The above result we can write in the following form (using
(10)):

L̇ (sξ ,z) =−

[
sξ

z

]T [
A11 0
0 A2

]

︸ ︷︷ ︸
A

[
sξ

z

]
, (24)

where A11 = ϒT D(ν)ϒ + kD and A22 = ΛT kI . Note that
the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
x = [sT

ξ ,z
T ]T one can write:

L̇ (t,x)≤−λm{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
t→∞

[
sξ (t)
z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +

1
2

zT kIz =
1
2

sT Ms+
1
2

zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz

= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Theorem 1. Consider the vehicle dynamic model (6), the kine-
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ξ [−Cξ (ξ )sξ −Dξ (ξ )sξ − kDsξ −ϒT kIz]

+ν̃T kIz. (22)

Recall however (9), that sT
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the symmetric matrix A is positive definite. Thus, assuming
λm{A}> 0 (λm is the minimal eigenvalue of the matrix A) one
can find an upper bound of the time derivative. Denoting now
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T ]T one can write:
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for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [52], the con-
clusion that the state space origin of the system (6), (3) together
with the controller (13):

lim
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z(t)

]
= 0, (26)

is globally exponentially convergent can be made.

3.2. Robustness issue In case of vehicle parameters uncer-
tainty we must consider robustness of the proposed control al-
gorithm. The sensitivity analysis will be done using the rela-
tionships between the variables in the given below way.

Taking into account inversion of the relationship (12) and
(14)-(17) (note that τ = ϒ−T π) the input forces vector τ can be
rewritten as follows:

τ = M(ν̇d +Λν̃)+C(ν)(νd +Λz)+D(ν)(νd +Λz)

+g(η)+ϒ−T kDϒ−1(ν̃ +Λz)+ kIz. (27)

Denoting now νr = νd +Λz, ν̇r = ν̇d +Λν̃ , and s = ν̃ +Λz we
are able to rewrite the above equation in the form:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)

+ϒ−T kDϒ−1s+ kIz. (28)

Note that comparing (13) we have the relationships:

s = ϒsξ , s = νr −ν , ṡ = ν̇r − ν̇ . (29)

Thus, we reformulate the Lyapunov function candidate as fol-
lows:

L =
1
2

sT
ξ Nsξ +
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2

zT kIz =
1
2

sT Ms+
1
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zT kIz. (30)

Its time derivative has the form:

L̇ = sT Mṡ+ ν̃T kIz = sT (Mν̇r −Mν̇)+ ν̃T kIz. (31)

Assuming for simplification C = C(ν), D = D(ν), g = g(η)
and using (29) we receive the given below equation:

Mν̇ = τ −Cν −Dν −g = τ −C(νr − s)−D(νr − s)−g. (32)

Hence, recalling that sTCs = 0 [22] we obtain:
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= sT (Mν̇r +Cνr +Dνr +g−Ds− τ)+ ν̃T kIz. (33)
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Let now define the control input in the following form:

 

Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz

−sT (D+ ϒ̂−T kDϒ̂−1)s+ ν̃T kIz

=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s

−zT ΛT kIz =−sT
ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
6

∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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and using the expression s = ϒsξ (the signals obtained from the 
controller) we get:

 

Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz

−sT (D+ ϒ̂−T kDϒ̂−1)s+ ν̃T kIz

=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s
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ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr
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includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
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i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
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Consequently, the impact of dynamic couplings effect
is reduced, too.
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sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s

−zT ΛT kIz =−sT
ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)
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where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):
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6

∑
i=1
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This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1
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dent quasi-velocities are used in the proposed decoupled
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3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:
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0; as a results the controller is simplified and reduced.
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Consequently, the impact of dynamic couplings effect
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(b) The matrix M is a diagonal one. It such case the sim-
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τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)
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4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Based on [61] we can find the strictly positive constants βi, where 
i = 1, …, 6 in order to ensure convergence of the tracking error 
to zero. Therefore, choosing βi ¸ j[ϒ ̂ T(M ̂ ν ̇ r + C̃νr + D ̂ νr + g̃)]ij  
we receive (assuming kD and ΛTkI as symmetric or diagonal 
matrices):

 

Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:
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+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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−sT
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Based on [52] we can find the strictly positive constants βi
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ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz

−sT (D+ ϒ̂−T kDϒ̂−1)s+ ν̃T kIz

=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s

−zT ΛT kIz =−sT
ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
6

∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

 (37)

This condition leads us to conclusion that the tracking error 
convergence is guaranteed for t ! 1 if the vehicle dynamics 
is not exactly known.

3.3. Some properties and advantages of decoupled con-
troller. The proposed controller, which is non-interacting in 
the sense of the quasi-acceleration vector, gives some useful 
advantages. Consider the practical interest of the controller.
1. From (27) we observe that the gain matrix KD = ϒ–TkDϒ–1 

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also 
to the vehicle dynamics. This means that the matrix kD is 
chosen according to dynamics of the controlled plant (e.g 
for a heavy vehicle the control coefficients can be different 
than for a light vehicle). Even if the system parameters are 
not exactly known, thanks to the matrix ϒ, the velocity error 
decreases quickly.

2. The diagonal inertia matrix N gives information about the 
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
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pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e. 
K(ξ) = 1

2 νTMν = 1
2 ξTNξ  = 1

2 ∑6
i=1Niξi

2. These independent 
quasi-velocities are used in the proposed decoupled con-
troller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:
(a)  For a symmetric vehicle in the xy-plane we get yg = 0; 

as a results the controller is simplified and reduced. 
Consequently, the impact of dynamic couplings effect 
is reduced, too.

(b)  The matrix M is a diagonal one. It such case the simpli-
fied form is as follows:

Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz

−sT (D+ ϒ̂−T kDϒ̂−1)s+ ν̃T kIz

=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s

−zT ΛT kIz =−sT
ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
6

∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz

−sT (D+ ϒ̂−T kDϒ̂−1)s+ ν̃T kIz

=−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− sT (D+ ϒ̂−T kDϒ̂−1)s

−zT ΛT kIz =−sT
ξ ϒ̂T (M̃ν̇r +C̃νr + D̃νr + g̃)

−sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
6

∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)
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Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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∑
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βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):
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ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.
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This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.
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vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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The set of selected gains for the nonlinear controller is as 
follows:

Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr

+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)

Denoting now M̃ = M̂−M, C̃ = Ĉ−C, D̃ = D̂−D, g̃ = ĝ−g,
and using the expression s = ϒ̂sξ (the signals obtained from
the controller) we get:

L̇ =−sT (M̃ν̇r +C̃νr + D̃νr + g̃)− (ν̃T + zT ΛT )kIz
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ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz. (36)

Based on [52] we can find the strictly positive constants βi
where i = 1, . . . ,6 in order to ensure convergence of the track-
ing error to zero. Therefore, choosing βi ≥ |[ϒ̂T (M̃ν̇r +C̃νr +
D̃νr + g̃)]i| we receive (assuming kD and ΛT kI as symmetric or
diagonal matrices):

L̇ ≤−
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∑
i=1

βi|sξ i|− sT
ξ ϒ̂T (D+ ϒ̂−T kDϒ̂−1)ϒ̂sξ − zT ΛT kIz.

(37)
This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.

3.3. Some properties and advantages of decoupled con-
troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1
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i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.
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Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Let now define the control input in the following form:

τ = M̂ν̇r +Ĉνr + D̂νr + ĝ+ ϒ̂−T kDϒ̂−1s+ kIz. (34)

where the parameters in M̂, Ĉ, D̂, ĝ, ϒ̂−T , and ϒ̂−T are known.
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+g− ĝ−Ds− ϒ̂−T kDϒ̂−1s− kIz]+ ν̃T kIz. (35)
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This condition leads us to conclusion that the tracking error
convergence is guaranteed for t → ∞ if the vehicle dynamics is
not exactly known.
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troller The proposed controller, which is non-interacting in
the sense of the quasi-acceleration vector, gives some useful
advantages. Consider the practical interest of the controller.

1. From (27) we observe that the gain matrix KD = ϒ−T kDϒ−1

includes also dynamics of the system. Consequently, the in-
put signal τ is strictly related not only to kinematics but also
to the vehicle dynamics. This means that the matrix kD is
chosen according to dynamics of the controlled plant (e.g
for a heavy vehicle the control coefficients can be different
than for a light vehicle). Even if the system parameters are
not exactly known, thanks to the matrix ϒ, the velocity error
decreases quickly.

2. The diagonal inertia matrix N gives information about the
inertia related to each quasi-acceleration (without dynam-
ical couplings). Moreover, each quasi-velocity ξi is inde-
pendent from other quasi-velocities and allows one to de-
termine the kinetic energy reduced by the variable ξi, i.e.
K(ξ ) = 1

2 νT Mν = 1
2 ξ T Nξ = 1

2 ∑6
i=1 Niξ 2

i . These indepen-
dent quasi-velocities are used in the proposed decoupled
controller.

3. Some particular cases of the presented controller can be de-
duced. We can point at two cases:

(a) For a symmetric vehicle in the xy-plane we get yg =
0; as a results the controller is simplified and reduced.

Fig. 2. Diagram of the control strategy in in MATLAB/Simulink en-
vironment for the tested airship

Consequently, the impact of dynamic couplings effect
is reduced, too.

(b) The matrix M is a diagonal one. It such case the sim-
plified form is as follows:

τ = Mν̇r +C(ν)νr +D(ν)νr +g(η)+ kDs+ kIz (38)

because we obtain ϒ = I (the identity matrix).

4. Simulation results
4.1. Indoor airship model In this section we present some re-
sults regarding the use of the proposed controller for the model
of airship AS500 (assuming indoor test with low velocity). The
simulations were done in MATLAB/Simulink environment for
6 DOF model with six signal inputs. The blimp parameters
coming from the report [9], were also exploited in reference
[1]. The maximal forces and torques applied by the control
system were assumed as follows: Fmax x,y,z = 107,13,40 N,
Tmax x,y,z = 27,267,27 Nm. The values were taken from [7]
for the airship AS800 (both airships have similar construction).
The diagram of the control strategy is presented in Fig. 2.
Case 1 - set of nominal parameters. In this example the nomi-
nal parameters set of the airship is taken into account. The task
relies on tracking the velocity trajectory described by:

νd = [sin(π/20 · t)+2, 0, sin(π/25 · t),
0, 0, 0.1 · cos(pi/15 · t)]T . (39)

The set of selected gains for the nonlinear controller is as
follows:

kD = diag{95,95,95,60,60,60}, (40)
kI = diag{85,85,85,60,60,60}, (41)
Λ = diag{0.35,0.35,0.35,1.0,1.0,1.0}, (42)

The desired linear and angular velocities profiles are given in
Fig. 3 a) and b), respectively. Note that three profiles change
during the airship motion according to sinusoidal functions.
Next, in Fig. 4 a) each linear velocity error time history is pre-
sented. The error decreases, as it was expected, quickly and
after about 30 second the error is close to zero. In Fig. 4 b) the
angular velocity errors for angular variables are shown. The
error reduction is not so fast as the linear velocity error but
after about 20 second all signals are significantly reduced. It
arises from the fact that part of dynamical couplings is taken
into account in the control algorithm. However, because the
angular velocity trajectory changes sinusoidal the error is only
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are
below 20 N. From Fig. 5 b) we see that the applied torque Ty
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Inserting (34) into (33) we receive:

L̇ = sT [(M− M̂)ν̇r +(C−Ĉ)νr +(D− D̂)νr
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after about 30 second the error is close to zero. In Fig. 4 b) the 
angular velocity errors for angular variables are shown. The 
error reduction is not so fast as the linear velocity error but 
after about 20 second all signals are significantly reduced. It 
arises from the fact that part of dynamical couplings is taken 

into account in the control algorithm. However, because the 
angular velocity trajectory changes sinusoidal the error is only 
close to zero. The control signals related to linear velocity vari-
ables are reported in Fig. 5 a). Their values after short time are 
below 20 N. From Fig. 5 b) we see that the applied torque Ty 

t [s]

2

1.5

0.5

0

1

–0.5

Li
ne

ar
 v

el
oc

ity
 e

rro
r [

m
/s

]

0 10 20 30 40 50 60
t [s]

120

100

80

60

20

0

40

–20

Co
nt

ro
l s

ig
na

l f
or

 lin
ea

r v
ar

ia
bl

es
 [N

]

0 10 20 30 40 50 60

a)

b)

a)

b)

b)

a)

Fig. 4. Case 1 (∆ν ´ ν̃): a) linear velocity errors ∆u, ∆v, ∆w, b) angular 
velocity errors ∆p, ∆q, ∆r

Fig. 5. Case 1 – control signals: a) applied forces fx, fy, fz, b) applied 
torques Tx, Ty, Tz

t [s]

0.1

0.08

0.06

0

An
gu

la
r v

el
oc

ity
 e

rro
r [

ra
d/

s]

0 10 20 30 40 50 60

0.04

0.02

–0.02

–0.04

–0.06

t [s]

150

100

50

0

–200Co
nt

ro
l s

ig
na

l f
or

 a
ng

ul
ar

 v
ar

ia
bl

es
 [N

m
]

0 10 20 30 40 50 60

–50

–100

–150

Fig. 6. Case 2 – 50% weight reduction (∆ν ´ ν̃): a) linear velocity errors ∆u, ∆v, ∆w, b) angular velocity errors ∆p, ∆q, ∆r

t [s]

1.5

0.5

0

1

–0.5

Li
ne

ar
 v

el
oc

ity
 e

rro
r [

m
/s

]

0 10 20 30 40 50 60
t [s]

0.1

0.08

0.06

0

An
gu

la
r v

el
oc

ity
 e

rro
r [

ra
d/

s]

0 10 20 30 40 50 60

0.04

0.02

–0.02

–0.04

–0.06

2

Brought to you by | Gdansk University of Technology
Authenticated

Download Date | 9/5/17 12:14 PM



465Bull.  Pol.  Ac.:  Tech.  65(4)  2017

Non-adaptive velocity tracking controller for a class of vehicles

has during the motion maximal value over 100 Nm. It can be 
concluded that the dynamical couplings affect the movement 
in this direction.

Case 2 (robustness test) – 50% weight reduction. In order to 
investigate sensitivity to the parameter changes of the controller 
the robustness test was done. It was assumed that the blimp 
weight has been reduced to 50%. Such situation may result 
from loss of gas in the blimp or if not all parameters are known 
exactly. The desired velocity was the same as for the nominal 
parameters set.

The linear velocity errors are shown in Fig. 6 a) whereas the 
angular velocity errors in Fig. 6 b). Similarly, as previously the 
decreasing of the initial errors is great. In spite of the fact that 
their values after about 30 s are slightly bigger than for the case 
of nominal parameters, the controller works still correctly with 
acceptable performance. From Fig. 7 a) and Fig. 7 b), it arises 
that the forces and torques have comparable values as in Case 1. 
These observations lead us to conclusion that the proposed con-
trol algorithm is robust to parameter changes.

4.2. Underwater vehicle model. The simulations were done 
for 6 DOF model of underwater vehicle which parameters can 
be found in [58].

Case 3 – set of nominal parameters. In this example the nom-
inal parameters are used and the velocity tracking trajectory is 
described by (39). The aim is to show that the proposed control 
scheme is appropriate also for marine vehicles.

The control gains selected for velocity tracking task are as 
follows:

 kD = diag{10, 10, 10, 10, 10, 10}, (43)

 kI = diag{10, 10, 10, 10, 10, 10}, (44)

 Λ = diag{1.5, 1.5, 1.5, 1.5, 1.5, 1.5}, (45)

They are different than for the airship because the dynamics 
of these two vehicles is quite different. Moreover, the control 
gains are directly related to the system dynamics.

In Fig. 8 a) three linear velocity errors are shown. We ob-
serve that the ∆u tends to zero after about 7 s, while the others 
are close to zero at the beginning of the movement. From Fig. 8 
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b) we see that all angular velocity errors are reduced to zero 
after about 5 s. We can note that the dynamical coupling causes 
that at the start all variables are actuated (in spite of that only 
is r tracked). The velocity tracking without overshoot can be 
explained by the strong mechanical couplings and great mass 
of the vehicle (m = 250 kg [58], whereas m = 18.375 kg [62] 
for the airship). Observing the control signals time history re-
lated to linear velocity variables given in Fig. 9 a) we see the 
greatest force changes for the fx. It arises from the fact that in 
the initial point the velocity is +2 [m/s] and next it is reduced. 
From Fig. 9 b) it is noticeable that the applied torque Ty has the 
greatest values. This fact can be explained by strong dynamical 
couplings which act in this direction.

5. Conclusions

A velocity tracking controller based on Lyapunov techniques 
has been derived in this work. The controller can be used for 

various fully actuated vehicles, namely marine (underwater) 
vehicles, hovercrafts or indoor airships moving with low ve-
locity. Its robustness was discussed and formally proven. It was 
also mentioned that simpler controllers can be deduced from 
the controller discussed. Simulation results for both 6 DOF air-
ship and underwater vehicle model show effectiveness of the 
proposed methodology.
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