PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction welding of UFG copper using the W2Mi prototype machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When welding ultra-fine-grained metals using conventional methods, the microstructure in the joint area is degraded (mainly due to recrystallization) in the heat-affected zone and a significant deterioration of mechanical properties, including joint strength. The aim of the research presented in this article was to identify the possibility of obtaining joints with strength close to initial material using friction welding of metal materials with ultra-fine grain. For this purpose, UFG (ultra-fine-grained) material was produced from technically pure M1Ez4 copper using a hybrid SPD (severe plastic deformation) process. The welding process was carried out on a machine with a prototype design that allows minimizing the welding time, while generating high force. The process parameters used on the prototype machine resulted in an increase in the hardness of the material by 4% in the joint area. The strength of the joint compared to the base material decreased slightly by 2%. The tests carried out proved that, using appropriate process parameters, it is possible to obtain a UFG metal joint without a decrease in its mechanical strength.
Rocznik
Strony
art. no. e139, 2024
Opis fizyczny
Bibliogr. 41 poz., fot., rys., wykr.
Twórcy
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
Bibliografia
  • 1. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, ZhuYT. Fundamentals of superior properties in bulk nano SPD materials. Mater Res Lett. 2016. https://doi.org/10.1080/21663831.2015.1060543.
  • 2. Rosochowski A. Severe plastic deformation technology. Dun-beath: Whittles Publishing; 2017.
  • 3. Langdon TG. The impact of bulk nanostructured materials in modern research. Rev Adv Mater Sci. 2010;25:11–5.
  • 4. Kowalczyk K, Jabłońska MB, Tkocz M, et al. Effect of the number of passes on grain refinement, texture and properties of DC01 steel strip processed by the novel hybrid SPD method. Archiv Civ Mech Eng. 2022;22:115. https:// doi. org/ 10. 1007/s43452-022-00432-6.
  • 5. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y. Producing bulk ultrafine-grained materials by severe plasticde formation. J Miner Met Mater Soc. 2006. https://doi.org/10.1007/s11837-006-0213-7.
  • 6. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI. Plastic working of metals by simple shear. Russ Metall. 1981;1:99–105.
  • 7. Segal VM. The method of material preparation for subsequent working. Patent no. 575892. USSR. 1977.
  • 8. de Filho AM, Prados EF, Valio GT, Rubert JB, Sordi VL, Ferrante M. Severe plastic deformation by equal channel angular pressing: product quality and operational details. Mater Res.2011;14:335–9.
  • 9. Homayouni SM, Vasili MR, Hong TS. Bonding technologies in manufacturing engineering. Compr Mater Process. 2014;6:237–46. https://doi.org/10.1016/B978-0-08-096532-1.00609-9.
  • 10. Chamanfar A, Jahazi M, Cormier J. A review on inertia and linear friction welding of Ni-based superalloys. Metall Mater Trans A.2015;46:1639–69. https://doi.org/10.1007/s11661-015-2752-4.
  • 11. Piolle N. Linear friction welding: a solid-state welding process for the manufacturing of aerospace titanium parts. In: TMS 2021150th annual meeting & exhibition supplemental proceedings the minerals, metals & materials series. Cham: Springer; 2021.https://doi.org/10.1007/978-3-030-65261-6_6.
  • 12. Fratini L, Buffa G, Cammalleri M, Campanella D. On the linear friction welding process of aluminum alloys: experimental insights through process monitoring. CIRP Ann. 2013;62(1):295–8. https://doi.org/10.1016/j.cirp.2013.03.056. (ISSN 0007-8506).
  • 13. Buffa G, Campanella D, D’Annibale A, di Ilio A, Fratini L. Experimental and numerical study on linear friction welding of AA2011aluminum alloy. KEM. 2014;611–612:1511–8.
  • 14. Gandra J, de Sousa Santos P, Bellarosa R, et al. Development of linear friction welding to add external features to spacecraft and launchers systems. CEAS Space J. 2023;15:151–67. https://doi.org/10.1007/s12567-021-00405-0.
  • 15. Sivaraj P, Vinoth Kumar M, Balasubramanian V. Microstructural characteristics and tensile properties of linear friction-welded AA7075 Aluminum alloy joints. Advances in Materials and metallurgy. Lecture notes in mechanical engineering. Singapore:Springer; 2019. https://doi.org/10.1007/978-981-13-1780-4_45.
  • 16. Choi JW, Li W, Ushioda K, et al. Flat hardness distribution in AA6061 joints by linear friction welding. Sci Rep. 2021;11:11756.https://doi.org/10.1038/s41598-021-91249-5.
  • 17. Mogami H, Matsuda T, Sano T, et al. High-frequency linear friction welding of aluminum alloys. Mater Des. 2018;139:457–66.https://doi.org/10.1016/j.matdes.2017.11.043.
  • 18. Ballat-Durand D, Bouvier S, Risbet M. Deep understanding of the influence of the process parameters during linear friction welding on the joint quality and the microstructural changes of two mono-material titanium alloy joints: the β-metastable Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and the near-α Ti–6Al–2Sn–4Zr–2Mo (Ti6242).Metall Mater Trans A. 2020;51:263–78. https://doi.org/10.1007/s11661-019-05503-7.
  • 19. Wan L, Huang Y. Friction welding of AA6061 to AISI 316L steel: characteristic analysis and novel design equipment. Int JAdv Manuf Technol. 2018;95:4117–28. https://doi.org/10.1007/s00170-017-1505-5.
  • 20. Wanjara P, Naik BS, Yang Q, et al. Linear friction welding of dissimilar materials 316L stainless steel to Zircaloy-4. Metall Mater Trans A. 2018;49:1641–52. https:// doi. org/ 10. 1007/s11661-018-4504-8.
  • 21. Haibin G, Guifeng X, Jingcheng L, et al. Rotary friction welding of pure aluminum to preheated brass. Weld World. 2022;66:2371–6. https://doi.org/10.1007/s40194-022-01367-5.
  • 22. Li X, Li J, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World. 2018;62:923–30. https:// doi. org/ 10. 1007/s40194-018-0601-y.
  • 23. Lakache HE, May A, Badji R, et al. The impact of the rotary friction welding pressure on the mechanical and microstructural characteristics of friction welds made of the alloys TiAl6V4and 2024 aluminum. Exp Tech. 2023. https://doi.org/10.1007/s40799-023-00671-z.
  • 24. Kulkarni VV, Kulkarni PC. Experimental Study and Investigation of Mechanical Properties of Material SS304/SS316 Using Rotary Friction Welding Technique. In: Yadav S, Haleem A, Arora PK, Kumar H, editors. Proceedings of second international conference in mechanical and energy technology. Smart innovation, systems and technologies, vol. 290. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-0108-9_12.
  • 25. Łukaszewicz A. Temperature field in the contact zone in the course of rotary friction welding of metals. Mater Sci. 2019;55:39–45.https://doi.org/10.1007/s11003-019-00249-4.
  • 26. Chen HY, Fu L, Zhang WY, et al. Radial distribution characteristics of microstructure and mechanical properties of Ti–6Al–4V butt joint by rotary friction welding. Acta Metall Sin (Engl Lett).2015;28:1291–8. https://doi.org/10.1007/s40195-015-0325-6.
  • 27. Gotawala N, Shrivastava A. Analysis of Al 6061 and mild steel joints from rotary friction welding. In: TMS 2021 150th annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-65261-6_60.
  • 28. Ajay V, Babu NK, Ashfaq M, et al. A review on rotary and linear friction welding of inconel alloys. Trans Indian Inst Met.2021;74:2583–98. https://doi.org/10.1007/s12666-021-02345-z.
  • 29. Skowrońska B, Chmielewski T, Pachla W, Kulczyk M, Skiba J. Presz W. Friction weldability of UFG 316L stainless steel. ArchMetall Mater. 2019;64:1051–8. https://doi.org/10.24425/amm.2019.129494.
  • 30. Orłowska M, Olejnik L, Campanella D, Buffa G, Morawiński Ł, Fratini L, Lewandowska M. Application of linear friction welding for joining ultrafine grained aluminium. J Manuf Process. 2020;56(2):540–9. https://doi.org/10.1016/j.jmapro.2020.05.012.
  • 31. Skowrońska B, Chmielewski T, Kulczyk M, Skiba J, Przybysz S. Microstructural investigation of a friction-welded 316l stainless steel with ultrafine-grained structure obtained by hydrostatic extrusion. Materials. 2021;14(6):1537. https://doi.org/10.3390/ma14061537.
  • 32. Xie GM, Ma ZY, Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater. 2007;57(2):73–6. https:// doi. org/ 10.1016/j.scriptamat.2007.03.048. (ISSN 1359-6462).
  • 33. Morawiński Ł, Jasiński C, Ciemiorek M, et al. Solid-state welding of ultrafine grained copper rods. Archiv Civ Mech Eng.2021;21:89. https://doi.org/10.1007/s43452-021-00244-0.
  • 34. Ciemiorek M, Morawiński Ł, Jasiński C, et al. Characterization of ultrafine-grained copper joints acquired by rotary friction welding. Archiv Civ Mech Eng. 2022;22:9. https://doi.org/10.1007/s43452-021-00326-z.
  • 35. Schmidt HC, Ebbert C, Rodman D, Homberg W, Grundmeier G. Maier HJ. Investigation of cold pressure welding: cohesion coefficient of copper. Key Eng Mater. 2015;651–653:1421–6. https://doi.org/10.4028/www.scientific.net/kem.651-653.1421.
  • 36. Kimura M, Kusaka M, Seo K, Fuji A. Improving joint properties of friction welded joint of high tensile steel. JSME Int J Ser A Solid Mech Mater Eng. 2005;48(4):399–405. https://doi.org/10.1299/jsmea.48.399.
  • 37. Kimura M, Choji M, Kusaka M, Seo K, Fuji A. Effect of friction welding conditions and aging treatment on mechanical properties of A7075–T6 aluminium alloy friction joints. Sci Technol Weld Join. 2005;10(4):406–12. https://doi.org/10.1179/174329305X44125.
  • 38. Uday MB, Ahmad Fauzi MN, Zuhailawati H, Ismail AB. Advancesin friction welding process: a review. Sci Technol Weld Join.2010;15(7):534–58. https://doi.org/10.1179/136217110X12785889550064.
  • 39. Sahin M, Erol AH, Ozel K. An experimental study on joining of severe plastic deformed aluminium materials with friction welding method. Mater Des. 2008;29(1):65–274. https://doi.org/10.1016/j.matdes.2006.11.004.
  • 40. Malopheyev S, Mironov S, Kulitskiy V, Kaibyshev R. Friction-stirwelding of ultrafine grained sheets of Al–Mg–Sc–Zr alloy. Mater Sci Eng A. 2015;624:132–9. https://doi.org/10.1016/j.msea.2014.11.079
  • 41. Salahi S, Yapici GG. Fatigue behavior of friction stir welded joints of pure copper with ultra-fine grains. Procedia Mater Sci. 2015;11:74–8. https://doi.org/10.1016/j.mspro.2015.11.097.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e80babb-6b4a-4ec3-abd4-27d97dc9b259
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.