Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The extraction of geothermal energy is associated with induced seismicity. Depending on the extraction parameters, such as injection pressure and volume, the induced seismicity is time-dependent. We investigate the case of the two geothermal power plants of Insheim and Landau, which are located in the Upper Rhine Graben in Southwest Germany. The induced seismicity was observed by a local seismic network consisting of a total of 19 stations, resulting in an earthquake catalog comprising 930 events for the Landau reservoir and 1985 events for the Insheim reservoir, both between 2012 and 2022. Based on this earthquake catalog, seismic source areas are defined for both reservoirs, and a probabilistic seismic hazard assessment (PSHA) is performed. Using temporal subsets of the earthquake catalog, PSHA can also be performed for shorter time ranges, resulting in larger expected PGV values in times of higher induced seismicity. The seismic velocity profiles obtained by site effect studies based on ambient seismic noise measurements highlight relatively large variations of the site effects on short scales in the area. The consequences of these lateral variations on the seismic hazard assessment are also discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
577--592
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
autor
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
autor
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
- Institute of Geotechnology and Mineral Resources, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
autor
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
Bibliografia
- 1. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst Univ Tokyo 35:415-456
- 2. Atkinson GM (2015) Ground-motion prediction equation for small-to- moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bull Seismol Soc Am 105(2a):981
- 3. Azari Sisi A, Schlittenhardt J, Spies T (2017) Probabilistic Seismic Hazard Analysis for Induced Seismicity. In: 15th D-A-CH conference on earthquake engineering and structural dynamics, Weimar, Germany, 21-22 September 2017.
- 4. Bachmann CE, Wiemer S, Woessner J, Hainzl S (2011) Statistical analysis of the induced basel 2006 earthquake sequence: introducing a probability-based monitoring approach for enhanced geothermal systems. Geophys J Int 186:793-807
- 5. Baker J, Gupta A (2016) Bayesian treatment of induced seismicity in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 106(3):860-870
- 6. Bettig B, Bard PY, Scherbaum F, Riepl J, Cotton F, Cornou C, Hatzfeld D (2001) Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): application to the Grenoble area. Boll Geof Teor Appl 42:281-304
- 7. Bommer J, Oates JS, Mauricio-Cepeda J, Lindholm C, Bird J, Torres J, Marroquin G, Rivas G (2006) Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng Geol 83:287-306
- 8. Bommer JJ, Stafford JPJ, Alarcon JE, Akkar S (2007) The influence of magnitude range on empirical ground motion prediction. Bull Seismol Soc Am 97(6):2152-2170
- 9. Bourne SJ, Oates SJ, Bommer JJ, Dost VE (2015) A monte carlo method for probabilistic hazard assessment of induced seismicity due to conventional natural gas production. Bull Seismol Soc Am 105(3):1721-1738
- 10. Convertito V, Maercklin N, Sharma N, Zollo A (2012) From induced seismicity to direct time-dependent seismic hazard. Bull Seismol Soc Am 102(6):2563-2573
- 11. Cornell A (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583-1606
- 12. Darendeli MB (2001) Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. In: PhD thesis. department of civil, architectural and environmental engineering, The University of Texas, Austin, Texas.
- 13. Deichmann N (2017) Theoretical basis for the observed break in ML=Mw scaling between small and large earthquakes. Bull Seismol Soc Am 107(2):505-520
- 14. DIN 4150-3:2016-12 (2016) Vibrations in buildings - Part 3: Effects on structures. DIN Media. https://doi.org/10.31030/2579353
- 15. Dost B, van Eck T, Haak H (2004) Scaling of peak ground acceleration and peak ground velocity recorded in the Netherlands. Boll di Geofis Teor Ed Appl 45(3):153-168
- 16. Dost B, Edward B, Bommer JJ (2018) The relationship between M and ML: a review and application to induced seismicity in the groningen gas field. Netherlands Seismol Res Lett 89(3):1062-1074
- 17. Fah D, Stamm G, Havenith HB (2008) Analysis of three-component ambient vibration array measurements. Geophys J Int 172:199-213
- 18. Frisenda M, Massa M, Spallarossa D, Ferreti G, Eva C (2005) Attenuation relationship for low magnitude earthquakes using standard seismometric records. J Earthq Eng 9(1):23-40
- 19. Geffers GM, Main IG, Naylor M (2022) Biases in estimating b-values from small earthquake catalogues: how high are high b-values? Geophys J Int 229:1840-1855
- 20. Gulia L (2023) Time-space evolution of the Groningen gas field in terms of b-value: insights and implications for seismic hazard. Seismol Res Lett 94:1807-1820. https://doi.org/10.1785/02202 20396
- 21. Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D (2020) DEEPSOIL 7.0, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
- 22. Heimann S, Kriegerowski M, Isken M, Cesca S, Daout S, Grigoli F, Juretzek C, Megies T, Nooshiri N, Steinberg A, Sudhaus H, Vasyura-Bathke H, Willey T, Dahm T (2017) Pyrocko—an open- source seismology toolbox and library. Potsdam GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001
- 23. Heimann S, Isken M, Kuhn D, Sudhaus H, Steinberg A, Daout S, Cesca S, Bathke H, Dahm T (2018) Grond: a probabilistic earthquake source inversion framework. Potsdam, GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2018.003
- 24. Hernandez AF, Drouet S, Secanell R, Gueguen P (2021) Introducing time-dependency in the probabilistic seismic hazard assessment: seismicity rates for induced seismicity case study. Project URBA- SIS-EU, New challenges for Urban Engineering Seismology.
- 25. Hobiger M, Bard PY, Cornou C, Le Bihan N (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36:1514-1526
- 26. Hobiger M, Goebel B, Beiers S, Spies T, Steinberg A, Thiel C, Azari Sisi A (2022) A passive seismic array measurement campaign in the Upper Rhine Graben (Southwest Germany). Third European Conference on Earthquake Engineering and Engineering Seismology, Bucharest, Romania, 4-9 September, 2022.
- 27. Kale O, Akkar S (2013) A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): the euclidean distance-based ranking (EDR) method. Bull Seismol Soc Am 103(2A):1069-1084
- 28. Kramer SL (1996) Geotechnical Earthquake Engineering. Prentice Hall, Haboken
- 29. Kuperkoch L, Olbert K, Meier T (2018) Long-term monitoring of induced seismicity at the Insheim geothermal site. Germany Bull Seismol Soc Am 108(6):3668-3683
- 30. Majer E, Braria R, Stark M, Oates S, Bommer JJ, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185-222
- 31. Marano S, Reller C, Loeliger HA, Fah D (2012) Seismic waves estimation and wavefield decomposition: application to ambient vibrations. Geophys J Int 191:175-188
- 32. Marzocchi W, Spassiani I, Stallone A, Taroni M (2020) How to be fooled searching for significant variations of the b-value. Geophys J Int 220:1845-1856
- 33. Massa MP, Morasca L, Moratto S, Marzorati G, Costa SD (2008) Empirical ground motion prediction equations for northern italy using weak and strong motion amplitudes, frequency content and duration parameters. Bull Seismol Soc Am 98(3):1319-1342
- 34. McGarr A, Flechter JB (2005) Development of ground-motion prediction equations relevant to shallow mining-induced seismicity in the trail mountain area, emery county. Utah Bull Seismol Soc Am 95(1):31-47
- 35. McGuire RK (2004) Seismic hazard and risk analysis. earthquake engineering research institute.
- 36. Mena B, Wiemer S, Bachmann CE (2013) Building robust models to forecast induced seismicity related to geothermal reservoir enhancement. Bull Seismol Soc Am 103(1):383-393
- 37. Mignan A, Woessner J (2012) Estimating the magnitude of completeness in earthquake catalogs, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-00180 805.Available at http://www.corssa.org
- 38. Mignan A, Landtwing D, Kastli P, Mena B, Wiemer S (2015) Induced seismicity risk analysis of the 2006 Basel, Switzerland, enhanced geothermal system project: influence of uncertainties on risk mitigation. Geothermics 53:133-146
- 39. Mousavi SM, Sheng Y, Zhu W, Beroza GC (2019) STanford earthquake dataset (STEAD): a global data set of seismic signals for AI. IEEE Access 7:179464-179476
- 40. Mousavi SM, Ellsworth WL, Zhu W, Chuang LY, Beroza GC (2020) Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun 11(1):3952
- 41. Munchmeyer J, Woollam J, Rietbrock A, Tilmann F, Lange D, Bornstein T et al (2022) Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J Geophys Res 127(1):e2021JB023499
- 42. Poggi V, Fah D (2010) Estimating rayleigh wave particie motion from three-component array analysis of ambient vibrations. Geophys J Int 180:251-267
- 43. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seism Soc Am 25(1):1-32
- 44. Risk Engineering Inc (2011) EZ-FRISK Software for Earthquake Ground Motion Estimation.
- 45. Scherbaum F, Delavaud E, Riggelsen C (2009) Model Selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99(6):3234-3247
- 46. Schlittenhardt J, Spies T, Kopera J, Morales W (2014) A simple model for probabilistic seismic hazard analysis of induced seismicity associated with deep geothermal systems. Energy Procedia 59:105-112
- 47. SEIGER (2024). https://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Ingenieurseismologische_Gefaehrdungsanalysen/SEIGER/DE/Home/SEIGER_node.html, last accessed: 29 October 2024.
- 48. Seyhan E, Stewart JP (2014) Semi-empirical nonlinear site amplification from NGA-West2 data and simulations. Earthq Spectra 30(3):1241-1256. https://doi.org/10.1193/063013EQS181M
- 49. Spies T, Abe S, Azari Sisi A, Baumgartner J, Borns J, Bornchen A, Beiers S, Cuenot N, Deckert H, Fost JP, Gaebler P, Goebel B, Hering P, Hobiger M, Keil S, Kremers S, Lindenfeld M, Megies T, Rietbrock A, Rumpker G, Schindler M, Schmidt B, Steinberg A, Thiel C, Wassermann J, Wegler U, Wilczek A, Winter H (2023) Seismic monitoring of deep geothermal power plants and possible seismic impact - results of the joint research project SEIGER. 18th D-A-CH Conference on Earthquake Engineering and Structural Dynamics, Kiel, Germany, 14-15 September 2023.
- 50. Steinberg A (2022) Seiger Catalog 2013-2022. https://doi.org/10.5281/ zenodo.7244017.
- 51. Tormann T, Wiemer S, Metzger S, Michael A, Hardebeck JL (2013) Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate. Geophys J Int 193(3):1474-1478. https://doi. org/10.1093/gji/ggt093
- 52. van Eck T, Goutbeek F, Haak H, Dost B (2006) Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in The Netherlands. Eng Geol 87(1-2):105-121
- 53. Vasterling M, Wegler U, Becker J et al (2017) Real-time envelope cross-correlation detector: application to induced seismicity in the Insheim and Landau deep geothermal reservoirs. J Seismol 21:193-208. https://doi.org/10.1007/s10950-016-9597-1
- 54. Waldhauser F (2001) hypoDD—A program to compute double-difference hypocenter locations (hypoDD version 1.0-03/2001). US Geol Surv Open File Rep, 01, 113.
- 55. Wang R (1999) A simple orthonormalization method for stable and efficient computation of green’s functions. Bull Seismol Soc Am 89(3):733-741
- 56. Wathelet M, Chatelain JL, Cornou C, Di Giulio G, Guillier B, Ohrnberger M, Savvaidis A (2020) Geopsy: a user-friendly open- source tool set for ambient vibration processing. Seismol Res Lett 91:1-12
- 57. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(2):374-383
- 58. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seism Soc Am 90(4):859-869
- 59. Woollam J, Munchmeyer J, Tilmann F, Rietbrock A, Lange D, Bornstein T et al (2022) SeisBench—a toolbox for machine learning in seismology. Seismol Res Lett 93(3):1695-1709
- 60. Zhu W, Mousavi SM, Beroza GC (2019) Seismic signal denoising and decomposition using deep neural networks. IEEE Trans Geosci Remote Sens 57(11):9476-9488
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e7da226-c4e7-42a4-bbf7-ff6d10e09ae8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.