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ABSTRACT

A two-dimensional finite-difference in time-domain (FDTD) discretization is applied to simulate finite
amplitude sound pulse propagation in a reflector-focusing !ithotripter. The FDTD-model is verified by the
comparison of wave profiles predicted by the model with measured ones in the focal region. Special
interest is set on a correct and stable modeling of spheroids with rigid or pressure release surfaces
representing different scatterers modifying the pulsed pressure field in the applications. The resulting
curved boundaries to be represented on a Cartesian grid tend to generate short spurious numerical waves
which may lead to numerica! instability. A method is presented to include arbitrarily curved boundaries in
a stable manner into the underlying rectangular grid. It is verified by the comparison of the analytical
solution of a simple one-dimensional seattering problem with corresponding numerical results. Using the
curved boundary technique different spheroidal scatterers are included into the Iithotripter model. Their
influences on the significant field parameters are demonstrated. Even the conditions on the surfaces which
may be of interest for simulating the interactions of kidney stones or gaseous bubbles with incident
pulses of the spheroids are computab!e.

INTRODUCTION

Focused strong pressure pulses and shock waves
are used in different biomedical applications like in
lithotripsy. The therapeutical efficiency depends on
field parameters like the amplitudes of the pressure
pulse or the contributions of its energy to positive
pressure, negative pressure and shocked components.
Beneath the influence of absorbing effects in layers of
human tissue therefore the modifications of the sound
pulse due to scattering on body stones, gaseous cavi-
ties or negative pressure induced cavitation bubbles are
of interest. Their investigation requires a flexible
numerical tool with only a moderate need for com-
putational cost. That is why the method of choice is
based on an finite-difference time-domain (FDTD) dis-
cretization of a set of equations approxirnating the Na-
vier-Stokes equations [l]. As nonlinear pulse and weak
shock propagation is considered the FDTD-model
must represent the propagation of waves of even short
rise times correctly whereas spurious short wave com-
ponents are dropped. To realize this economically a
dispersion relation preserving (DRP) algorithm [2} is
applied on the system of nonlinear equations.

The studies presented in this paper are carried out
using a model of the Storz lithotripter SL 10 [3}. This
model is verified by comparison of computed and mea-
sured wave profiles in the focal region. The interaction
of the corresponding pulse with the scatterers represen-
ted by spheroids is investigated.

MATHEMA TICAL MODEL

A mathematical model isrealized with a system of
partlal differential equations. Usually shocked solu-
tions are excluded in acoustic approaches. Fortunately
shock waves occuring in biomedical applications are
shocks of weak character in the sense of fluid dyna-
mies. They may be represented in a numerical scheme
using approximations of second order in nonlinearity
of the Euler equations. Thus it is possible to limit the
originally big scal es of the relevant quantities dealing
only with their (acoustic) perturbations [1]:

ap + Po V· il = -\7. (pil)at (la)
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(l a) and (I b) are approximations of the equations
of continuity and momentum, respectively.

To close the system of equations a nonlinear
equation of state is applied also valid up to the second
order of nonlinearity:
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P is the acoustic perturbation of the f1uids mass
density Po at atmospheric pressure Po, U is the
velocity vector and P the acoustic pressure. Co repre-
sents sound velocity, B/2A the acoustic parameter of
nonlinearity. Effects of (weak) dissipation and disper-
sion even relaxation may be represented by additional
equations.

As indicated above with the conditions lulmax«
Co or Pmax / E « l (with E being the fluid's bulk
modulus; Ewarer =: 2.2GPa) equations (1) and (2) may
inc1ude the (nonlinear) shock effects adequately. In the
applications the maximum pressures are of the order of
lOOMPa [4].

A correct shock representation in velocity and
amplitude (and anomalous dissipation) in the limit of
vanishing mesh sizes requires the fulfillment of the
conditions of the Lax- Wendroff theorem. Therefore (1)
has to be formulated in conservation form [5]:
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with

and r;(w) being arbitrary nonlinear functions of
W. For a two-dimensional (N = 2) axisymmetrical
geometry as presumed here x J and X2 tum out to be r
and z, respectively.

NUMERICAL MODEL

On the one hand the expected solutions have a
smooth character over wide parts of the computational
domain. On the other especially the short components
represcnting shocks are of particular interest. In order
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to inc1ude these huge time scal es as economically as
possible, a FDTD-scheme has to be designed with a
large "bandwidth" related to the available number of
points-per-wavelength (ppw). In this presentation a
DRP-algorithm [2] is taken as a basis for the discreti-
zation of (1) in the form of equation (3). The
algorithm has to be formulated as a conservative
method in the sense of Lax and Wendroff [5]. Addi-
tional relations that must be fulfilled by the field para-
meters as equations of state (2) or dispersion-dis-
sipation relations are fuIly integrable into the DRP-
algorithm ar parallely solved after every time step.
This does not require much additional computational
costs.

A second-order artificial viscosity is applied to eli-
minate spurious osciIlations. Following [2] a wave-
num ber dependent dimensionless damping function
L5(ktu) is designed with a low-pass filter character. k
and Lix are the wave-number of the signal and the
computational grid's mesh size, respectively.
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F ig.l Fourier transform b( ktu) of the artificial
selective damping terms

Fig. 1 shows b(kAx) from "00" ppw (kLix = O) to
2 ppw (kLix = n), The function moves smoothly from
"no damping" (b = O) of long waves to "maxirnum
damping" ( b = l) of waves being represented by onIy
twa grid points. The propos al given in [2] has been
modified to get a better filter-character for the mentio-
ned applications.

In combination with the scheme's inherent numeri-
cal viscosity the artificial selective damping is model-
ing the anomalous dissipation of energ y in the shock
front with second-order accuracy. This holds provided
that a flux representation (3) is taken as a basis.

A verification especially of the modeled losses due
to shock propagation is performed by a comparison
with Blackstock's one-dimensional results for cylindri-
cally diverging sinusoidal waves of finite amplitude
[6]. A 100kHz sine wave is radiated from an infinite



cylinder with a radius of 4cm into a fluid with the
acoustic properties of water at 20°C (CO = 1481 ms-I,
B/A = 5). At the cylinder's surface the radial compo-
nent of the velocity is 21.4ms-1 (corresponding to a
shock distance of lOcm). The "recorded" wave profiles
of the analytical, the numerical results and the solu-
tion with assumed linear propagation are compared at a
radius of 20cm (fig. 2).
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Fig.2 Linear (dashed) and finite amplitude (analyti-
cal: continous, numerical: with dots) conti-
nous wave solutions for-a cylindrically diver-
ging wave at r = 20cm

For the high intensities assumed the comparison
with the linear result shows a strong anomalous dissi-
patio n in the analytical as well as in the numerical so-
lution. The excellent agreements of the zeros even in
the shock locations demonstrate a correct reproduction
of the phase velocities even of the short wave compo-
nents. This is enabled by the DRP-algorithm fulfilIing
the Lax -Wendroff theorem.

To limit the computational domain absorbing
boundaries have to be impJemented. The basie equa-
tions are transformed locally in the boundary regions
into the characteristic form in order to decouple the
boundary treatment from time integration. So the
waves are separated into components entering and
leaving the computational domain. Combined with a
little amount of artificial viscosity the applied method
results in good absorber qualities [7].

CURVED BOUNDARIES

When multi-dimensional problem s are considered a
regular Cartesian grid is generally preferable for acous-
tic wave propagation problems. Therefore the model-
ing of arbitrary curved surfaces requires a method
taking into account that the corresponding curved
boundaries intersect lines of the grid at points being
no mesh points generally (fig. 3). To keep the high-
order character of the scheme and to enable an accurate

modeling of an objecr ~ curved surface in [8] a boun-
dary treatment based on the application of asymmetric
difference stencils is proposed. Implicitly the boundary
conditions are fulfilled approximately on the intersec-
tion points by interpolation. Using artificial selective
damping this method works quite well for (inner)
boundary lengths of not too many Lix. For bigger ob-
jects it fails. The asymmetric stencils generate too
strong spurious short wave components that finally
lead to instability.

Therefore the exclusive use of central symmetric
difference stencils to approximate the spatial deriva-
tives even in closest proximity to the curved bounda-
ries is proposed. This requires the determination of
values in so called ghost points G outside the inner
("fluidal") domain (the fluidal domain further is called
inner region) to keep approximately the conditions on
the curved boundary (fig. 3). Those ghost values have
to be computed using information from within the
inner region, more precise from inner region points
(source points S) each attached to one ghost point.
The line GS intersects the curved boundary rectangu-
larly in its midpoint (fig. 3). The generally time and
space dependent operator T: wis ~ wic providing the
ghost value is supplied by the character of the (Iocal)
boundary condition. Since the source points mostly
are no grid points the source values have to be interpo-
lated and extrapolated, respectively ..

F ig.3 Modeling a curved boundary in the Cartesian
grid

The interpolation method applied has to fulfilI two
main conditions. On the one hand it must be of higher
order to keep accuracy in the boundary region on the
other only a minimum amount 01' spurious short wave
components are allowed to be generated to keep stabi-
lity. Therefore bicubic splines [9] are applied. With a
medium number of interpolation nodes (in the presen-
ted simulations around 25 were used) they properly
fulfill the requirements mentioned. In determining the
set of interpolation nodes (fig. 3) which belong to one
source point attention must be paid. The sets sup-
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plying two neighboring source points must be the
more similar the shorter the distance is inbetween. The
numerical algorithm for the attachment of the inter-
polation nodes to the source points is performed only
once namely in the preprocessing part of the computer
run.

Compared to the method proposed in [8] beneath a
much bigger robustness higher accuracy is obtained as
every S-G pair stands for one tangent approximating
the curved boundary (fig. 3). The price are additional
computational costs which are small compared to the
total ones although the procedure has to be performed
before every time step.

To verify the presented method a simple "ID seat-
tering problem" is considered.
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Fig.4 Numerical model of a spherically converging
pulse interacting with a rigid sphere

A spherically converging pulse of the length of
about 23 L1x impinges on a rigid sphere placed in the
center (fig. 4). The wave profile of the incident pulse
is taken to be a damped sinusoidal function. For linear
propagation an analytical solution is available [10].
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F ig. 5 Analytically and numerically obtained wave
profiles of the reflected diverging pulse

The numerical solution is obtained solving (1) and
(2) reduced to Iinear propagation in cylindrical coordi-
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nates with r- and z- dependency (fig. 4). The boundary
conditions on the sphere's surface (the radius of curva-
ture is seven L1x) are fulfil1ed applying the method
proposed. The comparison of a wave profile recorded
by a "numerical hydrophone" (fig. 4) with the analyti-
cal result shows very good agreements independent of
the pulse's propagation direction relative to the grid
(fig. 5). They are obtained even in the case of the
radius of the sphere being two L1x only. For numerical
stability a weak artificial viscosity (see above) is suffi-
cient. The limiting factor remains to be dictated by the
minimum resolution of the wave for propagation com-
putation.

MODEL OF THE SL 10

The Storz SL 10 is a reflector-focused lithotripter [3].

F ig. 6 Pressure profile 4511s after onset ot' pulse
generation

The sound pulse is radiated from a cylindrical elec-
tromagnetic transmitter (fig. 6). A discharge proces s
conducted through a cylindrical coil induces eddy
currents on a metallic membrane. The enforced move
in radial direction has a duration in the order of micro-
seconds and generates the diverging cylindrical wave
front.

The process beginning with sound pulse radiation
continuing with reflection at the solid bras s reflector
and ending after passing the focal region is computed
and visualized in figs. 6 and 7. The simulated reflec-
tion at the paraboidaJ brass works in a stable manner.
The maximum pressure on the metallic membrane is
assumed to be 1.65MPa.

The excellent agreements of measured (the mea-
surements were performed using a PVDF needle-hydro-
phone) and predicted wave profiles in positions out of
the focus demonstrate theaccurate modeling of the
curved (!) reflector again (fig. 8).



Fig.7 Pressure profiles 120~s and 218~s after onset
of pulse generation
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Fig.8 Measured and predicted wave profiles in
position (z = -30mm, r = 20mm)

The comparison in the focus (z = 0, r = O) show s
deviations in the negative pressure parts and in the
shock's absolute amplitude (fig. 9). Here an under-
estimation of the computed shock's height meets an
overestimation of the measured result obtained with a
probe of finite size. Further PVDF needle-hydrophones
are known to underestimate stronger transient negative
pressures. Therefore the computed wave profile seems
to be more realistic since there are deviations only in
the closest focal region.

The excel1ent agreements of the zeroes and the
amplitudes demonstrute the suitability of the method
for the named applications as a whole.
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F ig. 9 Measured and predicted wave profiles in the
focus (z = 0, r = O)

SCATTERING AT A RIGID ELLIPSOID IN THE
FOCAL REGION

The pulse predicted by the numerical model is
taken as initial data to compute the scattering process
with a rigid ellipse of length l cm and width 3mm.
The ellipse is placed in the focus with one of its tips
(figs. 10 to 12). After 223fls (from onset of pulse
generation on the radiating cylinder) the main pulse
incidents on the scatterer (fig. 10). Later a spherica!ly
diverging scattering wave consisting of shorter wave
components is generated with the tip of the ellipse as
its center (amon g others these are supposed to consist
of the shocked components in reality). The longer
components are interacting only weakly with the seat-
terer (figs. 11 and 12).

Even in this severe "test run" the numerical sirnu-
lation remains stable. Further field parameters on the
scatterer's surface are determinable easily.

Fig.10 Reflector focused shocked pulse incident on
a rigid ellipse
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Fig.U Same proces s 81ls later

Fig.12 The pulse has passed the ellipse. Shorter
«omponents have been seattered at the tip in
the focus (+ \.

CONCLUSJONS

The curved boundary treatmem proposed remains
accurate and srable even when large surfaces are mo-
deled. In combination with a specific DRP-algorithm
it turns out t0 be a f1exible tool for computing the
propagation of biomedically applied high pressure pul-
ses under presence of scatterers or generally curved (in-
ner) boundaries. On the curved surfaces pressure- and
velocity-tirne histories are computable by the proposed
method in high-order accuracy like in inner-region
points. Shock v. aves being reproduced correctly in
amplitude and anornalous dissipation incident on cur-
ved boundaries remain numerically stable too.
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