Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Applying the biological product of arbuscular mycorrhiza fungi (AMF) is considered an effective strategy to improve crop productivity to cope with climate change in current agricultural production. The experiment was conducted to evaluate the impact on growth, yield, and secondary metabolites of medicinal mondo grass under rainfed conditions. The split-plot design was used with the main factor of six various AMF doses (0, 100, 200, 300, 400, and 500 kg·ha-1 year-1) and the sub-factor of two mondo grass genotypes (G1 and G2). AMF supplement had positive effects on both genotypes in increasing canopy size, the number of leaves and tillers, root growth, leaf osmotic pressure and chlorophyll fluorescence, total biomass, yield components, uptake of macronutrients, contents of polysaccharide, saponin, flavonoid, and decreasing leaf water deficit and ion leakage. G2 a higher drought-tolerant genotype performed better than G1 for investigated characteristics (except canopy height and SPAD), but the effect of AMF was clearer in the G1 genotype. Supplement of 300 kg AMF ha-1 year-1 could be the optimum rate for growth and medicinal quality of mondo grass under rainfed conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
90--98
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Department of Industrial and Medicinal Plant Science, Faculty of Agronomy, Vietnam National University of Agriculture, 131000, Hanoi, Vietnam
autor
- Department of Industrial and Medicinal Plant Science, Faculty of Agronomy, Vietnam National University of Agriculture, 131000, Hanoi, Vietnam
autor
- Department of Industrial and Medicinal Plant Science, Faculty of Agronomy, Vietnam National University of Agriculture, 131000, Hanoi, Vietnam
autor
- Department of Industrial and Medicinal Plant Science, Faculty of Agronomy, Vietnam National University of Agriculture, 131000, Hanoi, Vietnam
autor
- Department of Industrial and Medicinal Plant Science, Faculty of Agronomy, Vietnam National University of Agriculture, 131000, Hanoi, Vietnam
Bibliografia
- 1. Abdi N., van Biljon A., Steyn C., Labuschagne M.T. 2021. Bread wheat (Triticum aestivum) responses to arbuscular mycorrhizae inoculation under drought stress conditions. Plants, 10(9), 1756. DOI: 10.3390/ plants10091756.
- 2. Bahadur A., Batool A., Nasir F., Jiang S., Mingsen Q., Zhang Q., Pan J., Liu Y., Feng H. 2019. Mechanistic insights into arbuscular mycorrhizal fungimeđiate drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. DOI: 10.3390/ijms20174199.
- 3. Begum N., Wang L., Ahmad H., Akhtar K., Roy R., Khan M.I., Zhao T. 2022. Co-inoculation of arbuscular mycorrhizal fungi and the plant growthpromoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microbial Ecology, 83(4), 971–988. DOI: 10.1007/s00248-021-01815-7.
- 4. Benyong H., Ying C., Ying R., Chaoyin C. 2014. Content determination of total saponins from Opuntia. BioTechonoly: an Indian Journal, 10(18), 10401–10404.
- 5. Bowles T.M., Barrios-Masias F.H., Carlisle E.A., Cavagnaro T.R., Jackson L.E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science Total Environment, 566, 1223–1234. DOI: 10.1016.j.scitotenv.2016.05.178.
- 6. Chang C.C., Yang M.H., Wen H.M., Chern J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182.
- 7. Chandrasekaran M. 2020. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture, 10, 370. DOI: 10.3390/agriculture10090370.
- 8. Chen W., Meng P., Feng H., Wang C. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A.Mey. under drought stress. Forests, 11(10), 1117. DOI: 10.3390/f1110111.7.
- 9. Djebaili R., Pellegrini M., Smati M., Gallo M.D., Kitouni M. 2020. Actinomycete strains isolated from saline soils: Plant–growth–promoting traits and inoculation effects on Solanum lycopersicum. Sustainability, 12(11), 4617. DOI: 10.3390/su12114617.
- 10. El-Samad H.M., El-Hakeem K.N.S. 2019. Strategy role of mycorrhiza inoculation on osmotic pressure, chemical constituents and growth yield of maize plant grown under drought stress. American Journal of Plant Sciences, 10(6), 1102–1120. DOI: 10.4236/ ajps.2019.106080.
- 11. Hu Y., Xie W., Chen B. 2020. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 7(20). DOI: 10.1186/ s40538-020-00186-4.
- 12. Iqbal Z., Furubaysashi A., Fujii Y. 2004. Allelopathic effect of leaf debris, leaf aqueous extract and rhizosphere soil of Ophiopogon japonicus Ker‐Gawler on the growth of plants. Weed Biology and Management, 4(1), 43–48. DOI: 10.1111/j.1445-6664.2003.00116.x.
- 13. Kaewpradit W., Toomsan B., Cadisch G., Vityakon P., Limpinutana V., Saenjan P., Jogloy S., Patanothai A. 2009. Mixing groundnut residues and rice straw to improve yield and use efficiency. Field Crops Research, 110, 130–138.
- 14. Kamali S., Mehraban A. 2020. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS One, 15(12). DOI: 10.1371/journal.pone.0243824.
- 15. Khalil H.A., Ahmed M.E., El-Shazly S.M., Amal M.A.N. 2011. Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi, Scientia Horticulturae. 130(3), 624–632.
- 16. Konnov N.A., Karpun N., Kelina A.V. 2020. Drought tolerance of Liriope graminifolia (L.) Baker and Ophiopogon japonicus (Thunb.) Ker Gawl. – promising lawn-forming plants for the subtropical zone of the Black Sea coast of Russia. Horticulture and Viticulture, 4, 18–24. DOI: 10.31676/0235-2591-2020-4-18-24.
- 17. Li C., Han L.B., Zhang X. 2012. Enhanced drought tolerance of tobacco overexpressing OjERF gene is associated with alteration in proline and antioxidant metabolism. Journal of the American Society for Horticultural Science, 137(2), 107–113. DOI: 10.21273/JASHS.137.2.107.
- 18. Lin D. Z., Dong Y.J., Xu R. 2009. Preliminary study on the antifungal activity of the extracts from dwarf lilyturf (Ophiopogon japonicus K.) roots on three kinds of plant pathogen. Journal of Anhui Agricultural Science, 37(9), 4187–4188.
- 19. Mo Y., Wang Y., Yang R., Zheng J., Liu C., Li H., Ma J., Zhang Y., Wei C., Zhang X. 2016. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in Watermelon seedlings under well-watered and drought conditions. Frontiers in Plant Science, 7, 644. DOI: 10.3389/fpls.2016.00644.
- 20. Moradtalab N., Hajiboland R., Aliasgharzad N., Hartmann T.E., Neumann G. 2019. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy, 9(1), 41. DOI: 10.3390/agronomy9010041.
- 21. Nell M., Wawrosch C., Steinkellner S., Vierheilig H., Kopp B., Lössl A., Franz C., Novak J., ZitterlEglseer K. 2010. Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Medica, 76(4), 393–398.
- 22. Newman E.I., Reddell P. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytologist, 106, 745–751.
- 23. Nielsen S.S. 2017. Total carbohydrate by phenolsulfuric acid method. Food Analysis Laboratory Manual. Springer International Publishing, 137141. DOI: 10.1007/978-3-319-44127-6_14.
- 24. Ninh T.P, Nguyen T.T.H. 2016. Effects of arbuscular mycorrhiza fungi (AMF) on growth, development of ming aralia in G,ia Lam, Hanoi. Vietnam Journal of Agriculture and Rural Development, 8, 35–39.
- 25. Nguyen D.V., Nguyen T.T.H. 2011. Survey on cultivation and management practices and harvest technique and marketing of mondo grass (Ophiopogon japonicus Wall). Journal of Science and Development, 9(6), 928–936.
- 26. Quiroga G., Erice G., Aroca R., Delgado-Huertas A., Ruiz-Lozano J.M. 2020. Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. Plants, 9(2), 148. DOI: 10.3390/plants9020148.
- 27. Rani B., Madan S., Pooja, Sharma K.D., Kumari N., Kumar A. 2018. Mitigating the effect of drought stress on yield in wheat (Triticum aestivum) using arbuscular mycorrhiza fungi (Glomus mosseae). Indian Journal of Agricultural Science, 88(12), 1903–1908. DOI: 10.56093/ijas.v88i12.85444.
- 28. Sun Z., Song J., Xin X., Xie X., Zhao B. 2018. Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Frontiers in Microbiology, 5, 9–19.
- 29. Taber R.A., Trappe J. M. 1982. Vesicular-arbuscular mycorrhiza in rhizomes, scale-like leaves, roots, and xylem of ginger. Mycologia, 74(1), 156–161.
- 30. Tran T.T.H, Nguyen N.K. 2011. Study on indicators of water exchange that related to drought resistance of 20 sesame varieties. VNU Journal of Science, 27, 179–189.
- 31. Van’t Hoff J.H. 1887. The role of osmotic pressure in the analogy between solution and gases. Zeitschrift für Physikalische Chemie, 1, 481–508.
- 32. Wahab A., Muhammad M., Munir A., Abdi G., Zaman W., Ayaz A., Khizar C., Reddy S.P.P. 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially inf luencing ecosystems under abiotic and biotic stresses. Plants, 12, 3102. DOI: 10.3390/plants12173102.
- 33. Wang Y., Wang M., Li Y., Wu A., Huang J. 2018. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PloS One, 13(4), e0196408. DOI: 10.1371/journal.pone.0196408.
- 34. Wijayabandara S.M.K.H., Damunupola J.W., Krishnarajah S.A., Daundasekera W.A.M., Wijesundara D.S.A. 2015. Enhancement of growth performances of Ophiopogon japonicus ornamental foliage plant. Journal of Ornamental Plants, 5(2), 115–121.
- 35. Wu H.H., Zou Y.N., Rahman M.M., Ni Q.D., Wu Q.S. 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports, 7, 42389. DOI: 10.1038/ srep42389.
- 36. Yuan J., Shi K., Zhou X., Wang L., Xu C., Zhang H., Zhu G., Si C., Wang J., Zhang D. 2023. Interactive impact of potassium and arbuscular mycorrhiza fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatas L.). Frontiers in Microbiology, 13, 1075957. DOI: 10.3389/ fmicb.2022.1075957.
- 37. Zeng Y., Guo L.P., Chen B.D., Hao Z.P., Wang J.Y., Huang L.Q., Yang G., Cui X.M., Yang L., Wu Z.X., Chen M.L., Zhang Y. 2013. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza, 23(4), 253–265.
- 38. Zhang, J.Y. 2003. The preliminary study on Lilyturs. Pratacultural Science, 20, 69–70.
- 39. Zhao Y., Cartabia A., Lalaymia I., Declerck S. 2022. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza, 32, 221–256.
- 40. Zou Y.N., Wang P., Liu C.Y., Ni Q.D., Zhang D.J., Wu Q.S. 2017. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports, 7(1), 1–10.
- 41. Zou Y.N., Zhang F., Srivastava A.K., Wu Q.S., Kuča K. 2021. Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Frontiers in Plant Science, 11, 2046. DOI: 10.3389/fpls.2020.600792.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e7341b5-651f-450a-93ad-719ce77f079b