PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulating tropical storms in the Gulf of Mexico using analytical models

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different analytical models have been evaluated for estimating wind speed of the tropical storm, where the storm-induced wind velocity is calculated as a function of distance from the center of the hurricane. For these models, different parameters such as maximum wind speed, a radius of the maximum wind, hurricane shape parameter, hurricane translation speed and the orientation of the trajectory, etc., affect the shape of a hurricane. Hurricanes Lili (2002), Ivan (2004), Katrina (2005), Gustav (2008) and Ike (2008) from the Gulf of Mexico were used for skill assessment. The maximum wind radius was calculated using significant wind radii (R34, R50 and R64) reported by the National Hurricane Center. Different formulas for calculating the radius of maximum wind speed were evaluated. The asymmetric wind field for each hurricane was generated using analytic methods and compared with in situ data from buoys in the Gulf of Mexico and the H*Wind data. Analytical models were able to predict high wind speed under tropical cyclone conditions with relatively high precision. Among the analytical models evaluated in this research, the model proposed by Holland et al. (2010) showed excellent results. Dynamical wind models such as NCEP/NARR provide wind speed with the coarse spatial resolution which is acceptable for far-field locations away from the hurricane eye. In contrast, analytical models were able to produce sufficiently reliable wind speed within a particular radius from the center of the hurricane. Therefore blending of dynamical and analytical models can be used to provide accurate wind data during hurricane passage in the Gulf of Mexico.
Czasopismo
Rocznik
Strony
173--189
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
autor
  • Department of Marine & Earth Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
Bibliografia
  • [1] Atkinson, G. D., Holliday, C. R., 1977. Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Weather Rev. 105, 421-427.
  • [2] Brenner, S., Gertman, I., Murashkovsky, A., 2007. Preoperational ocean forecasting in the southeastern Mediterranean Sea: Implementation and evaluation of the models and selection of the atmospheric forcing. Mar. Sys. 65, 268-287.
  • [3] Cavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53, 613-627.
  • [4] Chavas, D. R., Lin, N., Emanuel, K., 2015. A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci. 72, 3647-3662.
  • [5] Chen, Y., Brunet, G., Yau, M., 2003. Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci 60, 1239-1256.
  • [6] DeMaria, M., Kaplan, J., 1994. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast 9, 209-220.
  • [7] Depperman, R. C. E., 1947. Notes on the origin and structures of Philippine typhoons. B. Am. Meteorol. Soc. 28, 399-404.
  • [8] Dvorak, V. F., 1975. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103, 420-430.
  • [9] Emanuel, K., 2004. Tropical cyclone energetics and structure. In: Fedorovich, E., Rotunno, R., Stevens, B. (Eds.), Atmospheric Turbulence and Mesoscale Meteorology 165-192.
  • [10] Emanuel, K., Rotunno, R., 2011. Self-Stratification of Tropical Cyclone Outflow. Part I: Implications for Storm Structure. J. Atmos. Sci. 68, 2236-2249.
  • [11] Graham, H. E., Nunn, D. E., 1959. Meteorological Considerations Pertinent to. Standard Project Hurricane, Atlantic and Gulf Coasts of the United States. Weather Bureau, U.S. Department of Commerce, Washington, D.C., 317 pp.
  • [12] Harper, B., 2002. Tropical cyclone parameter estimation in the Australian region: wind pressure relationships and related issues for engineering planning and design, Rep. no. J0106-PR003E, Woodside Energy, Ltd., 92 pp.
  • [13] Holland, G., 2008. A revised hurricane pressure-wind model. Mon.Weather Rev. 136, 3432-3445.
  • [14] Holland, G. J., 1980. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212-1218.
  • [15] Holland, G. J., Belanger, J. I., Fritz, A., 2010. A revised model for radial profiles of hurricane winds. Mon. Weather Rev. 138, 4393-4401.
  • [16] Houston, S. H., Shaffer, W. A., Powell, M. D., Chen, J., 1999. Comparisons of HRD and SLOSH surface wind fields in hurricanes: Implications for storm surge modeling. Weather Forecast 14, 671-686.
  • [17] Hu, K., Chen, Q., Kimball, S. K., 2012. Consistency in hurricane surface wind forecasting: an improved parametric model. Nat. Hazards 61, 1029-1050.
  • [18] Hughes, A .L., 1952. On the low level wind structure of tropical cyclones. J. Meteaor. 9, 422-428.
  • [19] Jelesnianski, C. P., Taylor, A. D., 1973. A preliminary view of storm surges before and after storm modifications. In: Environmental Research Laboratories. Weather Modification Program Office, Boulder, C.O., p. 33.
  • [20] Jelesniansky, C. P., 1967. Numerical Computations of Storm Surges With Bottom Stress. Mon. Weather Rev. 95, 740-756.
  • [21] Jelesniansky, C. P., 1992. SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Rep. NWS 48, US Dept. Commerce, NOAA, NWS, Alice Springs MD, 73 pp.
  • [22] Kawai, H., Honda, K., Tomita, T., Kakinuma, T., 2005. Characteristic of Typhoons in 2004 and Forecasting and Hindcasting of Their Storm Surges. Tech. Note Port and Airport Res. Inst., No 1103, 34 pp.
  • [23] Knaff, J. A., Sampson, C. R., DeMaria, M., Marchok, T. P., Gross, J. M., McAdie, C. J., 2007. Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather Forecast 22, 781-791.
  • [24] Knaff, J. A., Zehr, R. M., 2007. Reexamination of tropical cyclone wind-pressure relationships. Weather Forecast 22, 71-88.
  • [25] Levinson, D., Vickery, P., Resio, D., 2010. A review of the climatological characteristics of landfalling Gulf hurricanes for wind, wave, and surge hazard estimation. Ocean Engin. 37, 13-25.
  • [26] Lin, N., Chavas, D., 2012. On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res.-Atmos. 117, art. no D09120, 19 pp., https://doi.org/10.1029/2011JD017126.
  • [27] Mattocks, C., Forbes, C., 2008. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25, 95-119.
  • [28] Mazaheri, S., Kamranzad, B., Hajivalie, F., 2013. Modification of 32 years ECMWF wind field using QuikSCAT data for wave hindcasting in Iranian Seas. J. Coast. Res. 65, 344-350.
  • [29] Moeini, M., Etemad-Shahidi, A., Chegini, V., 2010. Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Appl. Ocean Res. 32, 209-218.
  • [30] Pan, Y., Chen, Y.-P., Li, J.-X., Ding, X.-l., 2016. Improvement of wind field hindcasts for tropical cyclones. Water Sci. Eng. 9, 58-66.
  • [31] Phadke, A. C., Martino, C. D., Cheung, K. F., Houston, S. H., 2003. Modeling of tropical cyclone winds and waves for emergency management. Ocean Eng. 30, 553-578.
  • [32] Powell, M. D., 1980. Evaluations of diagnostic marine boundary-layer models applied to hurricanes. Mon. Weather Rev. 108, 757-766.
  • [33] Powell, M. D., Dodge, P. P., Black, M. L., 1991. The landfall of Hurricane Hugo in the Carolinas: Surface wind distribution. Weather Forecast 6, 379-399.
  • [34] Powell, M. D., Houston, S. H., 1998. Surface wind fields of 1995 hurricanes Erin, Opal, Luis, Marilyn, and Roxanne at landfall. Mon. Weather Rev. 126, 1259-1273.
  • [35] Powell, M. D., Houston, S. H., Amat, L. R., Morisseau-Leroy, N., 1998. The HRD real-time hurricane wind analysis system. J. Wind Eng. Industrial Aerodynam. 77-78, 53-64.
  • [36] Schloemer, R. W., 1954. Analysis and synthesis of hurricane wind patterns over Lake Okeechobee, Florida. Hydrometeorological Rep. 31, Department of Commerce and U.S. Army Corps of Engineers, U.S. Weather Bureau, Washington, DC, 49 pp.
  • [37] Siadatmousavi, S., Jose, F., Stone, G., 2009. Simulating Hurricane Gustav and Ike wave fields along the Louisiana inner shelf: Implementation of an unstructured third-generation wave model, SWAN. In: Proc. Oceans 2009 Conf., 873-880.
  • [38] Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J. D., Pullen, J., Sclavo, M., 2005. Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J. Mar. Syst. 53, 217-233.
  • [39] Takagi, H., Nguyen, D., Esteban, M., Tran, T., Knaepen, H. L., Mikami, T., 2012. Vulnerability of coastal areas in Southern Vietnam against tropical cyclones and storm surges. In: The 4th International Conference on Estuaries and Coasts (ICEC2012), 8 pp.
  • [40] Wijnands, J. S., Qian, G., Kuleshov, Y., 2016. Spline-based modelling of near-surface wind speeds in tropical cyclones. Appl. Math. Model. 40, 8685-8707.
  • [41] Willoughby, H., Darling, R., Rahn, M., 2006. Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Weather Rev. 134, 1102-1120.
  • [42] Wood, V. T., White, L. W., 2011. A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci. 68, 990-1006.
  • [43] Wood, V. T., White, L. W., Willoughby, H. E., Jorgensen, D. P., 2013. A new parametric tropical cyclone tangential wind profile model. Mon. Weather Rev. 141, 1884-1909.
  • [44] Xie, L., Bao, S., Pietrafesa, L. J., Foley, K., Fuentes, M., 2006. A real-time hurricane surface wind forecasting model: Formulation and verification. Mon. Weather Rev. 134, 1355-1370.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e70f258-1828-4463-94a1-e374c52985d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.