PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and wear behaviour of the Al-Mg-nano ZrC composite obtained by means of the powder metallurgy method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work concentrates on the impact and contribution of zirconium carbide (ZrC) and magnesium to the mechanical and tribological properties of aluminium matrix composites. Distinctive weight portions of zirconium carbide, containing fixed weight fractions of magnesium and strengthening aluminium composites, were prepared utilising the entrenched cold-press sintering technique used in powder metallurgy. The uniform powder mixture was obtained by using planetary ball milling and it was then observed by using the scanning electron microscope technique. The hardness of the hybrid composite increased along with increase in the amount of the ZrC particle. The wear losses of sintered Al-Mg-ZrC composites were explored by directing sliding tests in pin-on-disc equipment. Hybridisation of reinforcements also decreased the wear loss of the composites at high sliding load and speed. This study reveals that the hybrid aluminium composite can be considered a unique material with high strength, low weight and wear resistance that will find their application in components to be used in the automobile and aero space engineering sectors.
Rocznik
Strony
729--735
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, KLN College of Engineering, Pottapalayam, 630612, Sivagangai District, Tamilnadu, India
autor
  • Department of Mechanical Engineering, KLN College of Engineering, Pottapalayam, Sivagangai District, Tamilnadu, India
  • Virudhunagar S. Vellaichamy Nadar Polytechnic College, Virudhunagar, Tamilnadu, India
  • Sri Raaja Raajan College of Engineering and Technology, Karaikudi, Tamilnadu, India
Bibliografia
  • [1] P. Ravindran, K. Manisekar, P. Radhika, and P. Narayanasamy, Tribological properties of powder metallurgy – Processed Aluminium self-lubricating hybrid composites with SiC additions, Materials and Design, 45(3), 561–570 (2013).
  • [2] S. Baskaran, V. Anandakrishnan, and M. Duraiselvam, “Investigations on dry sliding wear behavior of in situ casted AA7075– TiC metal matrix composites by using Taguchi technique”, Materials & Design, 60, 184 (2014).
  • [3] S.V. Prasad and R. Asthana, “Aluminum metal-matrix composites for automotive applications: tribological considerations”, Tribol. Lett., 17 445–453 (2004).
  • [4] A. Ansary Yar, M. Montazerian, H. Abdizadeh, and H.R. Baharvandi, “Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO”, Journal of Alloys and Compounds, 484, 400 (2009).
  • [5] S.R. Bakshi, V. Singh, S. Seal, and A. Agarwal, “Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders”, Surface Coating Technology, 203, 1544 (2009).
  • [6] M. Liu, Z. Wang, Q. Li, G. Shi, W. Chao, and Y. Li, “Effects of Y2O3 on the mechanical properties of Ti/Al2O3 composites of hot pressing sintering”, Materials Science and Engineering: A, 624, 181 (2015).
  • [7] S.C. Vettivel, N. Selvakumar, R. Narayanasamy, and N. Leema, “Numerical modelling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology”, Materials and Design, 50, 977 (2013).
  • [8] E.M. Sharifi and F. Karimzadeh, “Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy”, Wear, 271, 1072 (2011).
  • [9] D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R.S. Kambalid, “An investigation of the synthesis, consolidation and mechanical behavior of Al 6061 nanocomposites reinforced by TiC via mechanical alloying”, Materials & Design, 57, 394 (2014).
  • [10] P. Ravindran, K. Manisekar, S. Vinoth Kumar, and P. Rathika, Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Materials & Design, 51 (2013), pp. 448–456 (2013).
  • [11] T. Rajmohan, K. Palanikumar, and S. Arumugam, “Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles”, Composites: Part B, 59, pp.43–49 (2014).
  • [12] K. Gangatharan and N. Selvakumar, “Optimizing nano ceramic content on the tribological behavior of copper hybrid nano composites reinforced with MWCNTs and nano B4C using full factorial design”, Transactions of the Indian Institute of Metals, 69, pp.717–732 (2016).
  • [13] P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, and R. Narayanasamy, “Application of factorial techniques to study the wear of Al hybrid composites with graphite addition”, Materials & Design 39, 42–54 (2012).
  • [14] Y.A. Sorkhe, H. Aghajani, and A.T. Tabrizi, “Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization”, Materials & Design, 58, pp. 168–174 (2014).
  • [15] K. Rajkumar and S. Aravindhan, “Tribological performance of microwave sintered copper-TiC-graphite hybrid composites”, Tribology international, 44, 347‒358 (2011).
  • [16] P. Narayanasamy, N. Selvakumar, Tensile, “Compressive and wear behaviour of self-lubricating sintered magnesium based composites”, Transactions of Nonferrous Metals Society of China 27(2), 312‒323 (2017).
  • [17] S.C. Vettivel, N. Selvakumar, N. Leema, and A. Haiter Lenin, “Electrical resistivity, Wear map and modelling of extruded tungsten reinforced copper composite”, Materials and Design, 156, 791‒806 (2014).
  • [18] M. Lieblich, J. Crrochano, J. Ibanez, V. Vadillo, J.C. Walker, and W.M. Rainforth, “Subsurface modifications in powder metallurgy aluminium alloy composites reinforced with intermetallic MoSi2 particles under dry sliding wear”, Wear, 309, 126‒133 (2014).
  • [19] A. Abdollahi, A. Alizadeh, and H.R. Baharvandi, “Dry sliding tribological behavior and mechanical properties of Al2024‒5 wt.% B4C nanocomposite produced by mechanical milling and hot extrusion”, Materials and Design, 55, 471‒481 (2014).
  • [20] P. Narayanasamy, N.Selvakumar, and P. Balasundar, “Effect of hybridizing MoS2 on the tribological behaviour of Mg-TiC composites”, Transactions of the Indian Institute of Metals, 68(5), 911‒925 (2015).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e6dcd10-53da-4d7a-b48e-d22fa2f70ece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.