PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the industrial applications of bacterial cellulose

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Review of the industrial applications of bacterial cellulose. Bacterial cellulose (BC) differs from plant cellulose in fibre diameter, which for BC is between 20 and 100 nm. Literature data indicates that BC has a crystalline level of 90% and is thermally stable and has higher mechanical properties than plant cellulose. The purity of BC is estimated in the range of 98% because it is not contaminated with lignin, pectin and hemicelluloses like plant cellulose. The BC is used in medicine, cosmetics, electronics, food, paper and packaging industries. So far, bacterial cellulose has not been implemented for technological applications in the wood-based panels industry. Current research and development trends in the wood-based panels industry include the use of plant-based nanocellulose to improve selected properties of wood-based panels of various types. It should be assumed that BC may be a full value material ingredient in the production of wood-based panels, simultaneously improving mechanical and physical parameters of composites manufactured with its participation.
PL
Przegląd przemysłowych możliwości zastosowania celulozy bakteryjnej. Celuloza bakteryjna (BC) różni się od celulozy roślinnej średnicą włókna, która w przypadku BC wynosi od 20 do 100 nm. Dane literaturowe wskazują, że stopień krystaliczności BC kształtuje się na poziomie 90%, ponadto jest ona stabilna termicznie oraz odznacza się wyższymi wartościami właściwości mechanicznych od celulozy roślinnej. Czystość BC szacuje się w przedziale 98%, ponieważ nie jest ona zanieczyszczona ligniną, pektynami oraz hemicelulozami, jak celuloza pochodzenia roślinnego. BC wykorzystuje się w medycynie, przemyśle kosmetycznym, elektronicznym, spożywczym, papierniczym czy opakowaniowym. Dotychczas celuloza bakteryjna nie jest implementowana do technologicznych zastosowań w przemyśle tworzyw drewnopochodnych. Aktualne trendy badawczo - rozwojowe w przemyśle tworzyw drewnopochodnych obejmują m.in. zastosowanie nanocelulozy pochodzenia roślinnego celem poprawy wybranych właściwości płyt drewnopochodnych różnego typu. Należy przypuszczać, że BC może stanowić pełnowartościowy ingredient surowcowy w produkcji tworzyw drewnopochodnych, wpływający jednocześnie na poprawę parametrów mechanicznych i fizycznych kompozytów wytwarzanych z jego udziałem.
Twórcy
  • Warsaw University of Life Sciences - SGGW, Faculty of Wood Technology
  • Warsaw University of Life Sciences - SGGW, Faculty of Wood Technology
Bibliografia
  • 1. Abdelraof M., Hasaninb M. S., El -Saied H. (2019). Ecofriendly green conversion ofpotato peel wastes to high productivity. Carbohydrate Polymers 211: 75-83.
  • 2. Aitomaki Y., Oksman K. (2014). Reinforcing efficiency of nanocellulose in polymers.React Funct Polym 85: 151-156.
  • 3. Amnuaikit T., Chusuit T., Raknam P., Boonme P. (2011). Effects of a cellulose masksynthesized by a bacterium on facial skin characteristics and user satisfaction. MedDevices 4: 77-81bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
  • 4. Badel S., Bernardi T., and Michaud P. (2011). New perspectives forLactobacilliexopolysaccharides. Biotechnology Advances 29(1): 54-66.
  • 5. Bajpai S. K., Bajpai M., Gautam D. (2013). In situ Formation of Silver Nanoparticlesin Regenerated Cellulose-Polyacrylic Acid (RC-PAAc) Hydrogels for AntibacterialApplication. Journal of Macromolecular Science, Part A, 50(1): 46-54.
  • 6. Betlej I. (2019). Studies on the diversity of substrate composition in the culturemedium of Kombucha microorganisms and its influence on the quality of synthesizedcellulose, Annals of Warsaw University of Life Sciences Forestry and WoodTechnology 108: 21-25.
  • 7. Betlej I., Krajewski K., (2019). Bacterial cellulose synthesis by Kombucha microorganisms on a medium with a variable composition of nutrients, Annals ofWarsaw University of Life Sciences Forestry and Wood Technology 108: 53-57.
  • 8. Brown A. J. (1886). The chemical action of pure cultivations of bacterium aceti. J.Chem. Soc., Trans., 49: 172-187.
  • 9. Budhiono A., Rosidi B., Taher H., Iguchi M. (1999). Kineticaspects of bacterialcellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137-143.
  • 10. Chen L.-F., Huang Z.-H., Liang H.-W., Guan Q.-F., Yu, S.-H. (2013). BacterialCellulose-Derived Carbon Nanofiber MnO2 and Nitrogen-Doped Carbon NanofiberElectrode Materials: An Asymmetric Supercapacitor with High Energy and PowerDensity. Advanced Materials, 25(34): 4746-4752.
  • 11. Czaja W., Krystynowicz A., Bielecki S., Brown R.M. (2006). Microbial cellulose—thenatural power to heal wounds. Biomaterials 27:145-151.
  • 12. Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 amending Directive 94/62/EC on packaging and packaging waste (Text with EEArelevance) PE/12/2018/REV/2.
  • 13. Evans B. R., O’Neill H. M., Malyvanh V. P., Lee I., Woodward J. (2003). Palladiumbacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics 18(7): 917-923.
  • 14. Fabra M. J., López-Rubio A., Ambrosio-Martín J., Lagaron J. M. (2016). Improvingthe barrier properties of thermoplastic corn starch-based films containing bacterialcellulose nanowhiskers by means of PHA electrospun coatings of interest in foodpackaging. Food Hydrocolloids, 61: 261-268.
  • 15. Gallegos A., Carrera A. M., Parra S. H., Keshavarz, T., Iqbal, H. M. N.(2016). Bacterial cellulose: A sustainable source to develop value-added products - Areview. BioRes. 11(2): 5641-5655.
  • 16. George J., Kumar R., Sajeevkumar V. A., Ramana K. V., Rajamanickam R., AbhishekV., Siddaramaiah (2014). Hybrid HPMC nanocomposites containing bacterial cellulosenanocrystals and silver nanoparticles. Carbohydrate Polymers, 105: 285-292.
  • 17. George J., Ramana K. V., Bawa A. S. (2011). Bacterial cellulose nanocrystalsexhibiting high thermal stability and their polymer nanocomposites. Int. J. Biol.Macromol. 48: 50-57.
  • 18. Gomes F.P., Silva N.H.C.S., Trovatti E., Serafim L.S., Duarte M.F., Silvestre A.J.D.,Neto C.P., Freire C.S.R. (2013). Production of bacterial cellulose by Gluconacetobactersacchari using dry olive mill residue. Biomass Bioenerg 55:205-211.
  • 19. Gray D. 2013. Nanocellulose: from nature to high performance tailored material.Holzforschung, 67: 353.
  • 20. Guo Y., Zhang X., Hao W., Xie Y., Chen L., Li Z., Zhu B., Feng X. 2018. Nanobacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model.Carbohydr. Polym. 198:620-630.
  • 21. Hansted F. A. S., Hansted A. L. S., Padilha E. R. D., Caraschi J. C., Goveia, D., Ináciode Campos, C. (2019). The use of nanocellulose in the production of medium densityparticleboard panels and the modification of its physical properties. BioRes. 14(3):5071-5079.
  • 22. Hasan N., Biak D.R.A., Kamarudin S. (2012). Application of bacterial cellulose (BC)in natural facial scrub. IJASEIT 2:1-4.
  • 23. Huang Y.C., Zhu J., Yang Y., Nie C., Sun C.D. (2014). Recent advances in bacterialcellulose. Cellulose 21(1): 1-30.
  • 24. Huang C., Ji H., Guo B., Luo L., Xu W., Li J., Xu J. (2019). Composite nanofibermembranes of bacterial cellulose/ halloysite nanotubes as lithium ion batteryseparators. Cellulose 26: 6669–6681.
  • 25. Igbal H.M.N., Kyazze G., Tron., Keshavarz T. (2014). Laccase-Assisted grafting ofpoly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer:Development and characterization. Carnohydrate Polymers 113: 131-137.
  • 26. Iguchi M., Yamanaka S., Budhiono A. (2000). Bacterial cellulose - A masterpiece ofnature’s arts. Journal of Materials Science 35(2): 261-270.
  • 27. Jonas R., Farah L. F. (1998). Production and application of microbialcellulose. Polymer Degradation and Stability 59: 1-3.
  • 28. Kawecki M., Krystynowicz A., Wysota K., Czaja W., Sakiel S., Wróblewski P., GlikJ., Bielecki S. (2004). Bacterial Cellulose-Biosynthesis, Properties and Applications.Presented at the International Review Conference Biotechnology: Vienna, Austria,November, 14- 18.
  • 29. Kim C.W., Kim D.S., Kang S.Y. (2006). Structural studies of electrospun cellulosenanofibers. Polymer 14: 5097-5107.
  • 30. Klemm D., Heublein B., Fink H.-P., Bohn A. (2005). Cellulose: FascinatingBiopolymer and Sustainable Raw Material. Angewandte Chemie International Edition44(22): 3358-3393.
  • 31. Kurosumi A., Sasaki C., Yamashita Y., Nakamura Y. (2009). Utilization of variousfruit juices as carbon source for production of bacterial cellulose by Acetobacterxylinum NBRC 13693. Carbohydr Polym 76: 333-335.
  • 32. Kojima Y., Kato N., Ota K., Kobori H., Suzuki S., Aoki K., Ito H. (2018). CelluloseNanofiber as Complete Natural Binder for Particleboard. Forest Products Journal.3(68): 203-210.
  • 33. Lee, K.-Y., Buldum, G., Mantalaris, A., Bismarck, A. (2013). More Than Meets theEye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in AdvancedFiber Composites. Macromolecular Bioscience, 14(1), 10-32.
  • 34. Lin D., Liu Z., Shen R., Chen S., Yang, X. (2020). Bacterial cellulose in food industry:Current research and future prospects. International Journal of BiologicalMacromolecules 158: 1007-1019.
  • 35. Ludwicka, K., Kolodziejczyk, M., Gendaszewska-Darmach, E., Chrzanowski, M.,Jedrzejczak-Krzepkowska, M., Rytczak, P., Bielecki, S. (2018). Stable composite ofbacterial nanocellulose and perforated polypropylene mesh for biomedical applications.Journal of Biomedical Materials Research Part B: Applied Biomaterials.
  • 36. Mikkelsen, D., Flanagan, B. M., Dykes, G. A., Gidley, M. J. (2009). Influence ofdifferent carbon sources on bacterial cellulose production by Gluconacetobacterxylinus strain ATCC 53524. Journal of Applied Microbiology 107(2): 576-583.
  • 37. Mohite B. V., Patil S. V. (2014). A novel biomaterial: bacterial cellulose and its newera applications. Biotechnology and Applied Biochemistry 61(2): 101-110.
  • 38. Nguyen V. T., Flanagan B., Gidley M. J., Dykes G. A. (2008). Characterization ofCellulose Production by a Gluconacetobacter xylinus Strain from Kombucha. CurrentMicrobiology 57(5): 449-453.
  • 39. Okiyama A Motoki M. Yamanaka S. (1993). Bacterial cellulose IV. Application toprocessed foods. Food Hydrocoll 6 (6): 503-511.
  • 40. Okiyama, A., Motoki M., Yamanaka S. (1992). Bacterial cellulose II. Processing ofthe gelatinous cellulose for food materials. Food Hydrocoll 6(5): 479-487.
  • 41. Picheth G. F., Pirich C. L., Sierakowski M. R., Woehl M. A., Sakakibara C. N., deSouza C. F., de Freitas R. A. (2017). Bacterial cellulose in biomedical applications: Areview. International Journal of Biological Macromolecules 104: 97-106.
  • 42. Shaghaleh H., Xu X., Wang, S. (2018). Current progress in production of biopolymericmaterials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSCAdvances 8(2): 825-842
  • 43. Singh P., Sulaiman O., Hashim R., Peng L. C., Singh R. P. (2012). Using biomassresidues from oil palm industry as a raw material for pulp and paper industry: potentialbenefits and threat to the environment. Environment, Development and Sustainability15(2): 367-383.
  • 44. Siro´ I., Plackett D. (2010). Microfibrillated cellulose and new nanocompositematerials: a review. Cellulose 17: 459-494.
  • 45. Skocˇaj M. (2019). Bacterial nanocellulose in papermaking. Cellulose 26: 6477-6488.
  • 46. Stanisławska A.. (2016). Bacterial nanocellulose as a microbiological derivednanomaterial. Advances in materials science 4(16): 45-57.
  • 47. Son H.-J., Heo M.-S., Kim Y.-G., Lee S.-J. (2001). Optimization of fermentationconditions for the production of bacterial cellulose by a newly isolated Acetobactersp.A9 in shaking cultures. Biotechnology and Applied Biochemistry 33(1): 1-5.
  • 48. Thanaporn A., Toon C., Panithi R., Prapaporn B. (2011). Effects of a cellulose masksynthesized by a bacterium on facial skin characteristics and user satisfaction. MedicalDevices: Evidence and Research 4: 77-81.
  • 49. Torgbo S., Sukyai P. (2018). Bacterial cellulose-based scaffold materials for bonetissue engineering. Applied Materials Today 11: 34-49.
  • 50. Ullah H., Santos H. A., Khan T. (2016). Applications of bacterial cellulose in food,cosmetics and drug delivery. Cellulose 23(4): 2291-2314.
  • 51. Urbina L., Corcuera M.A., Eceiza A., Retegi A. (2019). Stiff all-bacterial cellulosenanopaper with enhanced mechanical and barrier properties. Materials Letters 246: 67-70.
  • 52. Lin Y.C., Wey Y.C., Lee M.L., Lin P.C. (2015). Cosmetic composition containingfragments of bacterial cellulose film and method for manufacturing thereof. US patent,US 20150216784 A1.
  • 53. Velásquez-Riaño M., Bojacá V. (2017). Production of bacterial cellulose fromalternative low-cost substrates. Cellulose 24(7): 2677-2698.
  • 54. Wu Z.-Y. , Li C., Liang H. W., Chen J. F., Yu S. H. 2013. Ultralight, Flexible, andFire‐Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem.Int. Ed. 2013 , 52: 2925 -2929.
  • 55. Yang J., Sun D., Li J., Yang X., Yu J., Hao Q., Liu W., Liu J., Zou Z., Gu, J. (2009). Insitu deposition of platinum nanoparticles on bacterial cellulose membranes andevaluation of PEM fuel cell performance. Electrochimica Acta, 54(26), 6300-6305.
  • 56. Yu X., Atalla R. H. (1996). Production of cellulose II by Acetobacter xylinum in thepresence of 2,6-dichlorobenzonitrile. International Journal of BiologicalMacromolecules. 19(2): 145-146
  • 57. Zhang H., Zhang J., Shong S., Wu G., Pu J. (2011). Modified nanocrystalline cellulosefrom two kinds of modifiers used for improving formaldehyde emission and bondingstrength of urea-formaldehyde resin adhesive. BioResources 6(4): 4430 - 4438.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e698846-9d02-417f-a25b-13dc57f858ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.