Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research introduces the Quantum Chimp Optimization Algorithm (QChOA), a pioneering methodology that integrates quantum mechanics principles into the Chimp Optimization Algorithm (ChOA). By incorporating non-linearity and uncertainty, the QChOA significantly improves the ChOA’s exploration and exploitation capabilities. A distinctive feature of the QChOA is its ability to displace a ’chimp,’ representing a potential solution, leading to heightened fitness levels compared to the current top search agent. Our comprehensive evaluation includes twenty- nine standard optimization test functions, thirty CEC-BC functions, the CEC06 test suite, ten real-world engineering challenges, and the 10.2478/jaiscr-2024-0018 – 359 322 Meng Yu, Mohammad Khishe, Leren Qian, Diego Mart´ın, Laith Abualigah, Taher M. Ghazal IEEE CEC 2022 competition’s dynamic optimization problems. Comparative analyses involve four ChOA variants, three leading quantum-behaved algorithms, three state-ofthe-art algorithms, and eighteen benchmarks. Employing three non-parametric statistical tests (Wilcoxon rank-sum, Holm-Bonferroni, and Friedman average rank tests), results show that the QChOA outperforms counterparts in 51 out of 70 scenarios, exhibiting performance on par with SHADE and CMA-ES, and statistical equivalence to jDE100 and DISHchain1e+12. The study underscores the QChOA’s reliability and adaptability, positioning it as a valuable technique for diverse and intricate optimization challenges in the field.
Wydawca
Rocznik
Tom
Strony
321--359
Opis fizyczny
Bibliogr. 97 poz., rys.
Twórcy
autor
- School of Artificial Intelligence, Anshan Normal University, Anshan, 114005, China
autor
- Department of Electronic Engineering, Imam Khomeini Naval Science University of Nowshahr, Iran
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan
- Innovation Center for Artificial Intelligence Applications, Yuan Ze University, Taiwan
autor
- School of Computing and Augmented Intelligence, Arizona State University, Tempe 85281, AZ, USA
autor
- ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
autor
- Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
- Jadara Research Center, Jadara University, Irbid 21110, Jordan
- Centre for Research Impact & Outcome, Chitkara University, Punjab, India
autor
- Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
Bibliografia
- [1] C. Wang, Y. Wang, K. Wang, Y. Dong, and Y. Yang, An Improved Hybrid Algorithm Based on Biogeography/Complex and Metropolis for Many-Objective Optimization, Math. Probl. Eng., vol. 2017, no. 1, p. 2462891, 2017.
- [2] F. Yu, C. Lu, J. Zhou, L. Yin, and K. Wang, A knowledge-guided bi- population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem, Eng. Appl. Artif. Intell., vol. 128, p. 107458, 2024.
- [3] K. Liu et al., Research on fault diagnosis method of vehicle cable terminal based on time series segmentation for graph neural network model, Measurement, p. 114999, 2024.
- [4] C. Wang, Z. Wang, S. Zhang, X. Liu, and J. Tan, Reinforced quantum- behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable- diameter-die-formed metal bent tubes, J. Comput. Des. Eng., vol. 10, no. 3, pp. 1060–1079, 2023.
- [5] W. Liu, X. Bai, H. Yang, R. Bao, and J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Lett., 2024.
- [6] W. Dang et al., Increasing Text Filtering Accuracy with Improved LSTM, Comput. Informatics, vol. 42, no. 6, pp. 1491–1517, 2023.
- [7] B. Cao, Y. Gu, Z. Lv, S. Yang, J. Zhao, and Y. Li, RFID Reader Anticollision Based on Distributed Parallel Particle Swarm Optimization, IEEE Internet Things J., vol. 8, no. 5, pp. 3099–3107, 2020.
- [8] R. Wang and R. Zhang, Techno- economic analysis and optimization of hybrid energy systems based on hydrogen storage for sustainable energy utilization by a biological-inspired optimization algorithm, J. Energy Storage, vol. 66, p. 107469, 2023.
- [9] H. Jia, S. Shi, D. Wu, H. Rao, J. Zhang, and L. Abualigah, Improve coati optimization algorithm for solving constrained engineering optimization problems, J. Comput. Des. Eng., vol. 10, no. 6, pp. 2223–2250, 2023.
- [10] L. Yin, M. Zhuang, J. Jia, and H. Wang, Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm, Math. Probl. Eng., vol. 2020, pp. 1–14, 2020.
- [11] R. Luo, Z. Peng, J. Hu, and B. K. Ghosh, Adaptive optimal control of affine nonlinear systems via identifier– critic neural network approximation with relaxed PE conditions, Neural Networks, vol. 167, pp. 588–600, 2023.
- [12] M. Shi, W. Hu, M. Li, J. Zhang, X. Song, and W. Sun, Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine, Mech. Syst. Signal Process., vol. 188, p. 110022, 2023.
- [13] G. Arun and V. Mishra, A review on quantum computing and communication, in 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, IEEE, 2014, pp. 1–5.
- [14] R. P. Feynman, Simulating physics with computers, in Feynman and computation, CRC Press, 2018, pp. 133–153.
- [15] S. Ramlo, Mixed methods research and quantum theory: Q methodology as an exemplar for complementarity, J. Mix. Methods Res., vol. 16, no. 2, pp. 226–241, 2022.
- [16] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. London. Ser. A Math. Phys. Sci., vol. 439, no. 1907, pp. 553–558, 1992.
- [17] M. Cerezo et al., Variational quantum algorithms, Nat. Rev. Phys., vol. 3, no. 9, pp. 625–644, 2021.
- [18] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science, Ieee, 1994, pp. 124–134.
- [19] X. Li and Y. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. Appl., vol. 33, pp. 8227–8235, 2021.
- [20] L. Luan, Z. Wang, and S. Liu, Progress of grover quantum search algorithm, Energy Procedia, vol. 16, pp. 1701–1706, 2012.
- [21] L. Zhu et al., Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer, Phys. Rev. Res., vol. 4, no. 3, p. 33029, 2022.
- [22] X. Xu and Z. Wei, Dynamic pickup and delivery problem with transshipments and LIFO constraints, Comput. Ind. Eng., vol. 175, p. 108835, 2023.
- [23] B. Cao et al., Multiobjective 3-D topology optimization of next- generation wireless data center network, IEEE Trans. Ind. Informatics, vol. 16, no. 5, pp. 3597–3605, 2019.
- [24] B. S. Yıldız, N. Pholdee, N. Panagant, S. Bureerat, A. R. Yildiz, and S. M. Sait, A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems, Eng. Comput., pp. 1–13, 2021.
- [25] B. S. Yıldız, S. Kumar, N. Pholdee, S. Bureerat, S. M. Sait, and A. R. Yildiz, A new chaotic Lévy flight distribution optimization algorithm for solving constrained engineering problems, Expert Syst., vol. 39, no. 8, p. e12992, 2022.
- [26] D. Gürses, P. Mehta, S. M. Sait, and A. R. Yildiz, African vultures optimization algorithm for optimization of shell and tube heat exchangers, Mater. Test., vol. 64, no. 8, pp. 1234–1241, 2022.
- [27] D. Gürses, P. Mehta, V. Patel, S. M. Sait, and A. R. Yildiz, Artificial gorilla troops algorithm for the optimization of a fine plate heat exchanger, Mater. Test., vol. 64, no. 9, pp. 1325–1331, 2022.
- [28] P. Mehta, B. S. Yildiz, S. M. Sait, and A. R. Yildiz, Hunger games search algorithm for global optimization of engineering design problems, Mater. Test., vol. 64, no. 4, pp. 524–532, 2022.
- [29] A. Alazeb et al., Remote intelligent perception system for multi-object detection, Front. Neurorobot., vol. 18, p. 1398703, 2024.
- [30] Y. Hartmann, H. Liu, and T. Schultz, High-level features for human activity recognition and modeling, in International Joint Conference on Biomedical Engineering Systems and Technologies, Springer, 2022, pp. 141–163.
- [31] L. S. Madsen et al., Quantum computational advantage with a programmable photonic processor, Nature, vol. 606, no. 7912, pp. 75–81, 2022.
- [32] X. Cai et al., An improved quantum- inspired cooperative co-evolution algorithm with muli-strategy and its application, Expert Syst. Appl., vol. 171, p. 114629, 2021.
- [33] W. Ding and J. Wang, A novel approach to minimum attribute reduction based on quantum-inspired self-adaptive cooperative co-evolution, Knowledge-Based Syst., vol. 50, pp. 1–13, 2013.
- [34] C. Yu, A. A. Heidari, and H. Chen, A quantum-behaved simulated annealing algorithm-based moth-flame optimization method, Appl. Math. Model., vol. 87, pp. 1–19, 2020.
- [35] R. K. Agrawal, B. Kaur, and S. Sharma, Quantum based whale optimization algorithm for wrapper feature selection, Appl. Soft Comput., vol. 89, p. 106092, 2020.
- [36] Y. Chen, F. Li, J. Wang, B. Tang, and X. Zhou, Quantum recurrent encoder– decoder neural network for performance trend prediction of rotating machinery, Knowledge-Based Syst., vol. 197, p. 105863, 2020.
- [37] J. Chen, X. Qi, L. Chen, F. Chen, and G. Cheng, Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection, Knowledge-Based Syst., vol. 203, p. 106167, 2020.
- [38] R. V Casa˜na-Eslava, P. J. G. Lisboa, S. Ortega-Martorell, I. H. Jarman, and J. D. Martín-Guerrero, Probabilistic quantum clustering, Knowledge-Based Syst., vol. 194, p. 105567, 2020.
- [39] P. Yan, L. Li, and D. Zeng, Quantum Probability-inspired Graph Attention Network for Modeling Complex Text Interaction, Knowledge-Based Syst., vol. 234, p. 107557, 2021.
- [40] W. Deng et al., Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization, Knowledge-Based Syst., vol. 224, p. 107080, 2021.
- [41] M. Sharma, S. Gupta, H. Aggarwal, T. Aggarwal, D. Gupta, and A. Khanna, Quantum Grey Wolf optimisation and evolutionary algorithms for diagnosis of Alzheimer’s disease, Int. J. Model. Identif. Control, vol. 41, no. 1–2, pp. 53–67, 2022.
- [42] N.-R. Zhou, S.-H. Xia, Y. Ma, and Y. Zhang, Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy, Quantum Inf. Process., vol. 21, no. 2, pp. 1–23, 2022.
- [43] T. Liu, L. Jiao, W. Ma, J. Ma, and R. Shang, A new quantum-behaved particle swarm optimization based on cultural evolution mechanism for multi-objective problems, Knowledge- Based Syst., vol. 101, pp. 90–99, 2016.
- [44] A. M. Anter, H. S. Elnashar, and Z. Zhang, QMVO-SCDL: A new regression model for fMRI pain decoding using quantum-behaved sparse dictionary learning, Knowledge-Based Syst., vol. 252, p. 109323, 2022.
- [45] S. Yarkoni, E. Raponi, T. B¨ack, and S. Schmitt, Quantum annealing for industry applications: Introduction and review, Reports Prog. Phys., 2022.
- [46] J. Li, B. Xu, Y. Yang, and H. Wu, Quantum ant colony optimization algorithm for AGVs path planning based on Bloch coordinates of pheromones, Nat. Comput., vol. 19, pp. 673–682, 2020.
- [47] M. Khishe and M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 2020, doi: 10.1016/j.eswa.2020.113338.
- [48] T. Hu, M. Khishe, M. Mohammadi, G.-R. Parvizi, S. H. T. Karim, and T. A. Rashid, Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm, Biomed. Signal Process. Control, p. 102764, 2021.
- [49] A. N. Ahmed, T. Van Lam, N. D. Hung, N. Van Thieu, O. Kisi, and A. El-Shafie, A comprehensive comparison of recent developed meta- heuristic algorithms for streamflow time series forecasting problem, Appl. Soft Comput., vol. 105, p. 107282, 2021.
- [50] E. H. Houssein, M. M. Emam, and A. Ali, An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm, Expert Syst. Appl., p. 115651, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115651.
- [51] Y. Tang, S. Liu, Y. Deng, Y. Zhang, L. Yin, and W. Zheng, Construction of force haptic reappearance system based on Geomagic Touch haptic device, Comput. Methods Programs Biomed., vol. 190, p. 105344, 2020.
- [52] D. Wu, W. Zhang, H. Jia, and X. Leng, Simultaneous feature selection and support vector machine optimization using an enhanced chimp optimization algorithm, Algorithms, vol. 14, no. 10, p. 282, 2021.
- [53] F. Valdez, O. Castillo, and P. Melin, An Exhaustive Review of Bio-Inspired Algorithms and its Applications for Optimization in Fuzzy Clustering, 2021.
- [54] S. P. H. Boroujeni and E. Pashaei, Data clustering using chimp optimization algorithm, in 2021 11th international conference on computer engineering and knowledge (ICCKE), IEEE, 2021, pp. 296–301.
- [55] L. Zhu, H. Ren, M. Habibi, K. J. Mohammed, and M. A. Khadimallah, Predicting the environmental economic dispatch problem for reducing waste nonrenewable materials via an innovative constraint multi- objective Chimp Optimization Algorithm, J. Clean. Prod., vol. 365, p. 132697, 2022.
- [56] T. Sui, D. Marelli, X. Sun, and M. Fu, Multi-sensor state estimation over lossy channels using coded measurements, Automatica, vol. 111, p. 108561, 2020.
- [57] X. Xu, C. Wang, and P. Zhou, GVRP considered oil-gas recovery in refined oil distribution: from an environmental perspective, Int. J. Prod. Econ., vol. 235, p. 108078, 2021.
- [58] L. Ding et al., Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain, IEEE Trans. Robot., vol. 36, no. 3, pp. 894–909, 2020.
- [59] M. Khishe and M. R. Mosavi, Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm, Appl. Acoust., 2020, doi: 10.1016/j.apacoust.2019.107005.
- [60] A. Fathy, D. Yousri, A. Y. Abdelaziz, and H. S. Ramadan, Robust approach based chimp optimization algorithm for minimizing power loss of electrical distribution networks via allocating distributed generators, Sustain. Energy Technol. Assessments, vol. 47, p. 101359, 2021.
- [61] S. Bhattacharya, S. L. Tripathi, and V. K. Kamboj, Design of tunnel FET architectures for low power application using improved Chimp optimizer algorithm, Eng. Comput., pp. 1–44, 2021.
- [62] N. Du, Q. Luo, Y. Du, and Y. Zhou, Color Image Enhancement: A Metaheuristic Chimp Optimization Algorithm, Neural Process. Lett., pp. 1–40, 2022.
- [63] Z. Chen, K. Zhang, T. H. T. Chan, X. Li, and S. Zhao, A Novel Hybrid Whale-Chimp Optimization Algorithm for Structural Damage Detection, Appl. Sci., vol. 12, no. 18, p. 9036, 2022.
- [64] Y. Yang, Y. Wu, H. Yuan, M. Khishe, and M. Mohammadi, Nodes Clustering and Multi-Hop Routing Protocol Optimization using Hybrid Chimp Optimization and Hunger Games Search Algorithms for Sustainable Energy Efficient Underwater Wireless Sensor Networks, Sustain. Comput.Informatics Syst., p. 100731, 2022.
- [65] M. Kaur, R. Kaur, and N. Singh, A novel hybrid of chimp with cuckoo search algorithm for the optimal designing of digital infinite impulse response filter using high-level synthesis, Soft Comput., pp. 1–25, 2022.
- [66] M. Kaur, R. Kaur, N. Singh, and G. Dhiman, SChoA: an newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications, Eng. Comput., 2021, doi: 10.1007/s00366-020-01233-2.
- [67] O. A. M. F. Alnaggar, B. N. Jagadale, and S. H. Narayan, MRI Brain Tumor Detection Using Boosted Crossbred Random Forests and Chimp Optimization Algorithm Based Convolutional Neural Networks .
- [68] M. E. Zayed et al., Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model, Sol. Energy, vol. 222, pp. 1–17, 2021.
- [69] F. Mousavipour and M. R. Mosavi, Sonar Data Classification using Neural Network Trained by Hybrid Dragonfly and Chimp Optimization Algorithms, 2022.
- [70] G. Dhiman, SSC: A hybrid nature- inspired meta-heuristic optimization algorithm for engineering applications, Knowledge-Based Syst., vol. 222, p. 106926, 2021.
- [71] A. Saffari, S. H. Zahiri, M. Khishe, and seyyed mohammadreza mosavi, Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition, IJMT, 2020, [Online]. Available: http://ijmt.iranjournals.ir/article241126.html
- [72] H. Jia, K. Sun, W. Zhang, and X. Leng, An enhanced chimp optimization algorithm for continuous optimization domains, Complex Intell. Syst., pp. 1–18, 2021.
- [73] M. Khishe, M. Nezhadshahbodaghi, M. R. Mosavi, and D. Martín, A Weighted Chimp Optimization Algorithm, IEEE Access, 2021.
- [74] W. Kaidi, M. Khishe, and M. Mohammadi, Dynamic Levy Flight Chimp Optimization, Knowledge- Based Syst., p. 107625, 2021.
- [75] G. Hu, W. Dou, X. Wang, and M. Abbas, An enhanced chimp optimization algorithm for optimal degree reduction of Said–Ball curves, Math. Comput. Simul., vol. 197, pp. 207–252, 2022.
- [76] Q. Zhang, S. Du, Y. Zhang, H. Wu, K. Duan, and Y. Lin, A Novel Chimp Optimization Algorithm with Refraction Learning and Its Engineering Applications, Algorithms, vol. 15, no. 6, p. 189, 2022.
- [77] N. Du, Y. Zhou, W. Deng, and Q. Luo, Improved chimp optimization algorithm for three-dimensional path planning problem, Multimed. Tools Appl., pp. 1–26, 2022.
- [78] N. Du, Y. Zhou, Q. Luo, M. Jiang, and W. Deng, Multi-strategy chimp optimization algorithm for global optimization and minimum spanning tree, Soft Comput., pp. 1–28, 2023.
- [79] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.
- [80] L. Liu, M. Khishe, M. Mohammadi, and A. H. Mohammed, Optimization of constraint engineering problems using robust universal learning chimp optimization, Adv. Eng. Informatics, vol. 53, p. 101636, 2022.
- [81] S.-P. Gong, M. Khishe, and M. Mohammadi, Niching Chimp Optimization for Constraint Multi-modal Engineering Optimization Problems, Expert Syst. Appl., p. 116887, 2022.
- [82] R. Poláková, L-SHADE with competing strategies applied to constrained optimization, in 2017 IEEE congress on evolutionary computation (CEC), IEEE, 2017, pp. 1683–1689.
- [83] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, Single-objective real- parameter optimization: Enhanced LSHADE-SPACMA algorithm, in Heuristics for optimization and learning, Springer, 2021, pp. 103–121.
- [84] K. Krishnamoorthy, Wilcoxon Signed- Rank Test, in Handbook of Statistical Distributions with Applications, 2020, pp. 339–342. doi: 10.1201/9781420011371-34.
- [85] H. Abdi, Holm’s sequential Bonferroni procedure, Encycl. Res. Des., vol. 1, no. 8, pp. 1–8, 2010.
- [86] G. A. Mack and J. H. Skillings, A Friedman-type rank test for main effects in a two-factor ANOVA, J. Am. Stat. Assoc., vol. 75, no. 372, pp. 947–951, 1980.
- [87] P. N. Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report., 2018. [Online]. Available: https://personal.ntu.edu.sg/404.html
- [88] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and S. Das, A test-suite of non-convex constrained optimization problems from the real-world and some baseline results, Swarm Evol. Comput., 2020, doi: 10.1016/j.swevo.2020.100693.
- [89] L. Yin, S. Lin, Z. Sun, S. Wang, R. Li, and Y. He, PriMonitor: An adaptive tuning privacy-preserving approach for multimodal emotion detection, World Wide Web, vol. 27, no. 2, pp. 1–28, 2024.
- [90] L. Yin, S. Lin, Z. Sun, R. Li, Y. He, and Z. Hao, A game-theoretic approach for federated learning: a trade-off among privacy, accuracy and energy, Digit. Commun. Networks, vol. 10, no. 2, pp. 389–403, 2024.
- [91] H. Liu, T. Xue, and T. Schultz, Merged Pitch Histograms and Pitch- duration Histograms., in SIGMAP, 2022, pp. 32–39.
- [92] J. Brest, M. S. Maucec, and B. Boskovic, The 100-Digit Challenge: Algorithm jDE100, in 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, 2019. doi: 10.1109/CEC.2019.8789904.
- [93] S. X. Zhang, W. Shing Chan, K. S. Tang, and S. Yong Zheng, Restart based Collective Information Powered Differential Evolution for Solving the 100-Digit Challenge on Single Objective Numerical Optimization, in 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, 2019. doi: 10.1109/CEC.2019.8790279.
- [94] J. F. Yeh, T. Y. Chen, and T. C. Chiang, Modified L-SHADE for Single Objective Real-Parameter Optimization, in 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, 2019. doi: 10.1109/CEC.2019.8789991.
- [95] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, A survey of evolutionary continuous dynamic optimization over two decades—Part A, IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 609–629, 2021.
- [96] J. Branke and H. Schmeck, Designing evolutionary algorithms for dynamic optimization problems, Adv. Evol. Comput. theory Appl., pp. 239–262, 2003.
- [97] T. Blackwell and J. Branke, Multiswarms, exclusion, and anti- convergence in dynamic environments, IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 459–472, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e68981d-c92e-4c0d-a38a-6cf894524740
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.