PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of temperature on rheological properties of self-compacting mortars and concretes in rest state

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ temperatury na właściwości reologiczne samozagęszczalnych zapraw i betonów w stanie spoczynku
Języki publikacji
EN
Abstrakty
EN
The rheological properties of fresh mortars and self-compacting concretes (SCC) at rest – the static yield value gs and the thixotropy factor AT – at temperatures from 10 to 30°C were investigated. The static yield value gs and the thixotropy factor AT of SCC depends on the temperature and the w/c ratio. Immediately after casting, the static yield value gs of the SCC is the higher the higher the temperature and/or w/c ratio are. Thixotropy factor AT of fresh SCC depends mainly on w/c ratio – the higher w/c ratio the lower AT is. The increase in temperature of SCC reduces thixotropy factor AT, but the effect is insignificant. During the 40 minutes that the SCC remain at rest, the static yield value gs increases and this increase is faster for mixes with a higher w/c ratio. Thixotropy factor AT of SCC left in rest first increases over time, but then, after just 20 to 40 minutes, begins to decrease. Temperature does not affect static yield value gs and thixotropy factor AT changes in time. The nature of the effect of temperature on the rheological properties of mortars and SCC is analogous. It was proven that model mortars can be used to predict the effect of temperature on the rheological properties of SCC both in the flow phase and at rest and to predict changes in these parameters over time. The implications of the temperature effect on the rheological properties of SCC in terms of formwork pressure were also discussed.
PL
Celem badań było określenie wpływu temperatury i czasu na parametry reologiczne mieszanek BSZ w stanie spoczynku – statyczną granicę płynięcia gs i współczynnik tiksotropii AT. Dodatkowo zweryfikowano możliwość wykorzystania badań reologicznych wykonanych na zaprawach modelowych do przewidywania wpływu temperatury na parametry reologiczne mieszanki BSZ w stanie spoczynku. Stwierdzono, że zmieniająca się w zakresie od 10 do 30°C temperatura istotnie wpływa na statyczną granicę płynięcia gs mieszanki BSZ w stanie spoczynku. Im temperatura mieszanki jest wyższa, tym statyczna granica płynięcia gs mieszanki jest większa i szybciej wzrasta w czasie. Wzrost statycznej granicy płynięcia w czasie wynika najpierw z samozagęszczenia mieszanki BSZ, a następnie z postępującego procesu hydratacji i utraty efektu działania SP. Statyczna granica płynięcia gs jest znacznie, nawet o rząd wielkości większa od dynamicznej granicy płynięcia. Współczynnik tiksotropii AT maleje ze wzrostem temperatury, przy czym wpływ temperatury na współczynnik tiksotropii AT nie jest istotny w porównaniu do wpływu w/c. Wykazano, że charakter wpływu temperatury na właściwości reologiczne zapraw modelowych i mieszanek BSZ w spoczynku jest analogiczny. Zaprawy modelowe mogą być wykorzystywane do prognozowania wpływu temperatury na właściwości reologiczne mieszanki BSZ w stanie spoczynku. Wyznaczono zależności liniowe pomiędzy parametrami reologicznymi zapraw i mieszanek betonowych w stanie spoczynku. Przedyskutowano mechanizm wpływu temperatury na właściwości reologiczne mieszanki BSZ w stanie spoczynku w aspekcie ich wpływu na parcia na deskowania. W wyższej temperaturze mieszanka BSZ charakteryzuje się większą statyczną granicą płynięcia gs i szybszym jej wzrostem, co powoduje, że parcie mieszanki BSZ na deskowania tym mniejsze, im większa jest jej temperatura.
Rocznik
Strony
255--269
Opis fizyczny
Bibliogr. 42 poz., il., tab.
Twórcy
  • Silesian University of technology, Faculty of Civil Engineering, Gliwice, Poland
  • Silesian University of technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
  • [1] G. De Schutter, P. Bartos, P. Domone, and J. Gibbs, Self-Compacting Concrete. Whittless Publishing, 2008.
  • [2] J.A. Daczko, Self-Consolidating Concrete: Applying what we know. CRC Press, 2012.
  • [3] N. Roussel, Ed. Understanding the Rheology of Concrete. Woodhead Publishing, 2012.
  • [4] T. Proske, K.H. Khayat, A. Omran, and O. Leitzbach, “Form pressure generated by fresh concrete: A review about practice in formwork design”, Materials and Structures/Materiaux et Constructions, vol. 47, no. 7, pp. 1099-1113, 2014, doi: 10.1617/s11527-014-0274-y.
  • [5] N. Gowripalana, P. Shakora, and P. Rockerb, “Pressure exerted on formwork by self-compacting concrete at early ages: A review”, Case Studies in Construction Materials, vol. 15, 2021, doi: 10.1016/j.cscm.2021.e00642.
  • [6] Y. Gamil, J. Nilimaa, M. Emborg, and A. Cwirzen, “Lateral formwork pressure for self-compacting concrete - a review of prediction models and monitoring technologies”, Materials, vol. 14, no. 16, 2021, doi: 10.3390/ma14164767.
  • [7] Y. Gamil, A. Cwirzen, J. Nilimaa, and M. Emborg, “The Impact of Different Parameters on the Formwork Pressure Exerted by Self-Compacting Concrete”, Materials, vol. 16, no. 2, 2023, doi: 10.3390/ma16020759.
  • [8] Y. Qian and S. Kawashima, “Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy”, Cement and Concrete Composites, vol. 86, pp. 288-296, 2018, doi: 10.1016/j.cemconcomp.2017.11.019.
  • [9] A.F. Omran, K.H. Khayat, and Y.M. Elaguab, “Effect of SCC mixture composition on thixotropy and formwork pressure”, Journal of Materials in Civil Engineering, vol. 24, no. 7, pp. 876-888, 2012, doi: 10.1061/(ASCE)MT.1943-5533.0000463.
  • [10] J.J. Assaad, “Correlating thixotropy of self-consolidating concrete to stability, formwork pressure, and multilayer casting”, Journal of Materials in Civil Engineering, vol. 28, no. 10, 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001624.
  • [11] J. Assaad, K. Khayat, and H. Mesbah, “Assessment of Thixotropy of Flowable and Self-Consolidating Concrete”, ACI Materials Journal, vol. 100, pp. 99-107, 2003.
  • [12] J.D. Puerto Suárez, J. Lizarazo-Marriaga, J. Cárdenas-Pulido, C.S. L Uribe, and C. Higuera, “Prediction of the rheological properties of nanosilica blended self-compacting concrete under the influence of a dispersing agent”, European Journal of Environmental and Civil Engineering, vol. 27, no. 4, pp. 1644-1672, 2023, doi: 10.1080/19648189.2022.2091665.
  • [13] M.E. Mathews, T. Kiran, A. Nammalvar, M. Anbarasu, B. Kanagaraj, and D. Andrushia, “Evaluation of the rheological and durability performance of sustainable self-compacting concrete”, Sustainability, vol. 15, no. 5, 2023, doi: 10.3390/su15054212.
  • [14] H.G. Sahin, M. Temel, and A. Mardani, “Determination of optimum VMA utilization dosage in cementitious systems in terms of rheological and flowability properties”, Materials Today: Proceedings, 2023, doi: 10.1016/j.matpr.2023.03.550.
  • [15] A. M. Mohammed, D. S. Asaad, and A. I. Al-Hadithi, “Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag”, Journal of King Saud University - Engineering Sciences, vol. 34, no. 6, pp. 388-397, 2022, doi: 10.1016/j.jksues.2020.12.005.
  • [16] H. Liu, G. Duan, J. Zhang, and Y. Yang, “Rheological properties of paste for self-compacting concrete with admixtures”, Archives of Civil Engineering, vol. 68, no. 3, pp. 585-599, 2022, doi: 10.24425/ace.2022.141904.
  • [17] R. Siddique, Ed. Self-Compacting Concrete: Materials, Properties and Applications. Woodhead Publishing, 2020, doi: 10.1016/C2018-0-01683-7.
  • [18] S. Oesterheld, F.V. Mueller, and O.H. Wallevik, “The Influence of Workability Loss and Thixotropy on Formwork Pressure in SCC Containing Stabilizers”, presented at The Third North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, USA, 2008.
  • [19] J.J. Assaad and K.H. Khayat, “Effect of casting rate and concrete temperature on formwork pressure of self-consolidating concrete”, Materials and Structures/Materiaux et Constructions, vol. 39, no. 287, pp. 333-341, 2006.
  • [20] J.H. Kim, N. Noemi, and S.P. Shah, “Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete”, Cement and Concrete Composites, vol. 34, no. 6, pp. 746-753, 2012, doi: 10.1016/j.cemconcomp.2012.02.016.
  • [21] J.J. Assaad and K.H. Khayat, “Effect of viscosity-enhancing admixtures on formwork pressure and thixotropy of self-consolidating concrete”, ACI Materials Journal, vol. 103, no. 3, pp. 280-287, 2006.
  • [22] K.H. Khayat and J.J. Assaad, “Effect of w/cm and high-range water-reducing admixture on formwork pressure and thixotropy of self-consolidating concrete”, ACI Materials Journal, vol. 103 no. 3, pp. 186-193, 2006.
  • [23] G.R. Lomboy, X. Wang, and K. Wang, “Rheological behavior and formwork pressure of SCC, SFSCC, and NC mixtures” Cement and Concrete Composites, vol. 54, pp. 110-116, 2014, doi: 10.1016/j.cemconcomp.2014.05.001.
  • [24] M.P. Drewniok, G. Cygan, and J. Gołaszewski, “Influence of the Rheological Properties of SCC on the Formwork Pressure”, Procedia Engineering, vol. 192, pp. 124-129, 2017, doi: 10.1016/j.proeng.2017.06.022.
  • [25] W. Brameshuber and S. Uebachs, “The influence of the temperature on the rheological properties of selfcompacting concrete”, in International RILEM Symposium on Self-Compacting Concrete, O. Wallevik and I. Nielsson, Eds. RILEM Publications SARL, 2003, pp. 174-183.
  • [26] J. Gołaszewski and G. Cygan, “The effect of temperature on the rheological properties of self-compacting concrete, in Brittle Matrix Composites 9. Warsaw, Poland, 2009, pp. 359-368, doi: 10.1533/9781845697754.359.
  • [27] J. Gołaszewski, “Effect of temperature on rheological properties of superplasticized cement mortars”, in ACI Special Publication SP-239. American Concrete Institute, 2006, pp. 423-440.
  • [28] J.-Y. Petit, K.H. Khayat, and E. Wirquin, “Coupled effect of time and temperature on variations of plastic viscosity of highly flowable mortar”, Cement and Concrete Research, vol. 39, no. 3, pp. 165-170, 2009, doi: 10.1016/j.cemconres.2008.12.007.
  • [29] W. Schmidt, Design concepts for the robustness improvement of self-compacting concrete: effects of admixtures and mixture components on the rheology and early hydration at varying temperatures. Technische Universiteit Eindhoven, 2014, doi: 10.6100/IR771936.
  • [30] W. Schmidt, H.J.H. Brouwers, H.C. Kühne, and B. Meng, “Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures”, Cement and Concrete Composites, vol. 49, pp. 111-126, 2014, doi: 10.1016/j.cemconcomp.2013.12.004
  • [31] P.F.G. Banfill, “The rheology of fresh cement and concrete - a review”, in Proceedings of 11th International Cement Chemistry Congress, G. Grieve and G. Owens, Eds. Durban, South Africa, 2003, pp. 50-62.
  • [32] J. Gołaszewski, “The influence of cement paste volume in mortar on the rheological effects of the addition of superplasticizer”, in Proceedings of the Eighth International Symposium on Brittle Matrix Composites BMC8, A. M. Brandt, V. C. Li, and I. H. Marshall, Eds. Cambridge, Woodhead Publ. Limited, 2006.
  • [33] M. Helm and F. Hornung, “Rheological test procedure in the ready-mixed concrete bath plant”, Annual Transactions Nordic Rheological Society, vol. 5, pp. 106-108, 1997.
  • [34] J. Jin, “Properties of mortar for self – compacting concrete”, PhD Thesis, University of London, 2002.
  • [35] J. Norberg, O. Peterson, and P. Billberg, “Effects of a new generation of superplasticizers on the properties of fresh concrete”, in 5th CANMET/ACI International Conference Superplasticizers and Other Chemical Admixtures in Concrete. Rome, Italy, 1997, pp. 583-598.
  • [36] J.-Y. Petit, K.H. Khayat, and E. Wirquin, “Yield stress and viscosity equations for mortars and selfconsolidating concrete”, Cement and Concrete Research, vol. 37, no. 5, pp. 655-670, 2007, doi: 10.1016/j.cemconres.2007.02.009.
  • [37] J. Gołaszewski, G. Cygan, M. Drewniok, and A. Kostrzanowska-Siedlarz, “Usability of mortar for predicting shear strength development at rest of fresh self compacting concrete”, Construction and Building Materials, vol. 295, 2021, doi: 10.1016/j.conbuildmat.2021.123617.
  • [38] J. Gołaszewski, A. Kostrzanowska-Siedlarz, G. Cygan, and M. Drewniok, “Mortar as a model to predict self-compacting concrete rheological properties as a function of time and temperature”, Construction and Building Materials, vol. 124, pp. 1100-1108, 2016, doi: 10.1016/j.conbuildmat.2016.08.136.
  • [39] H. Liu, J. Zhang, and Y. Yang, “Study on stability of self-compacting concrete applied for filling layer structure from paste, mortar and concrete”, Archives of Civil Engineering, vol. 68, no. 3, pp. 500-521, 2022, doi: 10.24425/ace.2022.141899.
  • [40] H. Liu, Guangchao D. J. Zhang, and Y. Yang, “Rheological properties of paste for self-compacting concrete with admixtures”, Archives of Civil Engineering, vol. 68, no. 3, pp. 585-599, 2022, doi: 10.24425/ace.2022.141904.
  • [41] J. Szwabowski and J. Gołaszewski, “Cement paste properties and paste-aggregate void saturation ratio as the factors governing the selfcompactness and compressive strength of concrete”, Cement, Wapno, Beton, vol. 15, pp. 97-107, 2010.
  • [42] J. Gołaszewski, “Influence of cement properties on new generation superplasticizers performance”, Construction and Building Materials, vol. 35, pp. 586-596, 2012, doi: 10.1016/j.conbuildmat.2012.04.070.
Identyfikator YADDA
bwmeta1.element.baztech-9e673517-e254-42e7-8241-cea8db56c607