PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ARL-Wavelet-BPF optimization using PSO algorithm for bearing fault diagnosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rotating element bearings are the backbone of every rotating machine. Vibration signals measured from these bearings are used to diagnose the health of the machine, but when the signal-to-noise ratio is low, it is challenging to diagnose the fault frequency. In this paper, a new method is proposed to enhance the signal-to-noise ratio by applying the Asymmetric Real Laplace wavelet Bandpass Filter (ARL-wavelet-BPF). The Gaussian function of the ARL-wavelet represents an excellent BPF with smooth edges which helps to minimize the ripple effects. The bandwidth and center frequency of the ARL-wavelet-BPF are optimized using the Particle Swarm Optimization (PSO) algorithm. Spectral kurtosis (SK) of the envelope spectrum is employed as a fitness function for the PSO algorithm which helps to track the periodic spikes generated by the fault frequency in the vibration signal. To validate the performance of the ARL-wavelet-BPF, different vibration signals with low signal-to-noise ratio are used and faults are diagnosed.
Rocznik
Strony
589--606
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wzory
Twórcy
  • Department of Measurements and Control Systems, Silesian University of Technology, 44-100 Gliwice, Poland
  • Department of Measurements and Control Systems, Silesian University of Technology, 44-100 Gliwice, Poland
  • Department of Natural Language Processing, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
Bibliografia
  • [1] Mfpt dataset. Society for Machinery Failure Prevention Technology, 2012.
  • [2] M. Ahsan and D. Bismor: Early-stage fault diagnosis for rotating element bearing using improved harmony search algorithm with different fitness functions. IEEE Transactions on Instrumentation and Measurement, 71 (2022). DOI: 10.1109/TIM.2022.3192254.
  • [3] M. Ahsan and D. Bismor: Early-stage faults detection using harmony search algorithm and stft-based spectral kurtosis. In Roman Szewczyk, Cezary Zieliński, and Małgorzata Kaliczyńska (eds.), Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques, 2022, 75-84, Cham, Springer International Publishing. DOI: 10.1007/978-3-031-03502-9_8.
  • [4] J. Antoni: The spectral kurtosis: A useful tool for characterising non-stationary signals. Mechanical Systems and Signal Processing, 20(2), (2006), 282-307. DOI: 10.1016/j.ymssp.2004.09.001.
  • [5] J. Antoni: Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 21(1), (2007), 108-124. DOI: 10.1016/j.ymssp.2005.12.002.
  • [6] J. Antoni and R.B. Randall: The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20(2), (2006), 308-331. DOI: 10.1016/j.ymssp.2004.09.002.
  • [7] D. Bismor: Analysis and comparison of vibration signals from internal combustion engine acquired using piezoelectric and MEMS accelerometers. Vibration in Physical Systems, 30(1), (2019). https://vibsys.put.poznan.pl/_journal/2019-30-1/vibsys_2019-vol30-1-book.pdf.
  • [8] D. Bismor: System for vehicle sound and vibration monitoring using mems sensors. 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, (2019). DOI: 10.23919/SPA.2019.8936824.
  • [9] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han and Q. Pan: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA Journal of Automatica Sinica, 6(4), (2019), 904-916. DOI: 10.1109/JAS.2019.1911540.
  • [10] X. Gu, S. Yang, Y. Liu and R. Hao: Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis. Measurement Science and Technology, 27(12), (2016), 125019. DOI: 10.1088/0957-0233/27/12/125019.
  • [11] Y. Hu, W. Bao, X. Tu, F. Li and nd K. Li: An adaptive spectral kurtosis method and its application to fault detection of rolling element bearings. IEEE Transactions on Instrumentation and Measurement, 69(3), (2020), 739-750. DOI: 10.1109/TIM.2019.2905022.
  • [12] K. Jianshe, X. Lei, Z. Jianmin and T. Hongzhi: A new improved kurtogram and its application to bearing fault diagnosis. Shock and Vibration, 2015(3), (2015), 1-22. DOI: 10.1155/2015/385412.
  • [13] D. Krokavec, A. Filasová and P. Lişčinský: On fault tolerant control structures incorporating fault estimation. Archives of Control Sciences, 26(4), (2016), 453-469. DOI: 10.1515/acsc-2016-0025.
  • [14] Y. Lei, J. Lin, Z. He and Y. Zi: Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 25(5), (2011), 1738-1749. DOI: 10.1016/j.ymssp.2010.12.011.
  • [15] A. Pries, D. Ramírez and P.J. Schreier: LMPIT-inspired tests for detecting a cyclostationary signal in noise with spatio-temporal structure. IEEE Transactions on Wireless Communications, 17(9), (2018), 6321-6334. DOI: 10.1109/TWC.2018.2859314.
  • [16] A. Rai and S.H. Upadhyay: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International, 96 (2016), 289-306. DOI: 10.1016/j.triboint.2015.12.037.
  • [17] R.B. Randall and J. Antoni: Rolling element bearing diagnostics - A tutorial. Mechanical Systems and Signal Processing, 25(2), (2011), 485-520. DOI: 10.1016/j.ymssp.2010.07.017.
  • [18] M. Rhif, A. Ben Abbes, I. Riadh Farah, B. Martínez and Y. Sang: Wavelet transform application for/in non-stationary time-series analysis: A review. Applied Sciences, 9(7), (2019). DOI: 10.3390/app9071345.
  • [19] J. Stolarek: Improving energy compaction of a wavelet transform using genetic algorithm and fast neural network. Archives of Control Sciences, 20(4), 2010, 417-433.
  • [20] R.-B. Sun, F.-P. Du, Z.-B. Yang, X.-F. Chen and K. Gryllias: Cyclo-stationary analysis of irregular statistical cyclicity and extraction of rotating speed for bearing diagnostics with speed fluctuations. IEEE Transactions on Instrumentation and Measurement, 70 (2021), 1-11. DOI: 10.1109/TIM.2021.3069381.
  • [21] M.-Q. Tran, M.-K. Liu, Q.-V. Tran and T.-K. Nguyen: Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors. IEEE Transactions on Instrumentation and Measurement, 71 (2022), 1-13. DOI: 10.1109/TIM.2021.3139706.
  • [22] S.S. Udmale and S. Kumar Singh: Application of spectral kurtosis and improved extreme learning machine for bearing fault classification. IEEE Transactions on Instrumentation and Measurement, 68(11), (2019), 4222-4233. DOI: 10.1109/TIM.2018.2890329.
  • [23] D. Wang, P.W. Tse and K. Leung Tsui: An enhanced kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 35(1), (2013), 176-199. DOI: 10.1016/j.ymssp.2012.10.003.
  • [24] X. Wang, B. Wang and W. Chen: The second-order synchrosqueezing continuous wavelet transform and its application in the high-speed-train induced seismic signal. IEEE Geoscience and Remote Sensing Letters, 18(6), (2021), 1109-1113. DOI: 10.1109/LGRS.2020.2993596.
  • [25] X. Xia, Y. Xing, B. Wei, Y. Zhang, X. Li, X. Deng and L. Gui: A fitness-based multi-role particle swarm optimization. Swarm and Evolutionary Computation, 44 (2019), 349-364. DOI: 10.1016/j.swevo.2018.04.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e5f5846-3191-446c-b437-87e4d72f61d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.