PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Developing an optimum beneficiation route for a low-grade chromite ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an optimum beneficiation route was developed for an existing concentrator that processes low-grade chromite deposits. This objective is challenging as the grade of the ore under consideration is approximately 5%, which is the lowest grade processed in Turkey. Detailed characterization, process mineralogy and liberation studies were performed. The optimum fineness of grind was found to be 100% finer than 0.4 mm after the initial beneficiation tests. Laboratory test work was performed using a combination of a teetered bed separator (TBS), spiral concentrator and shaking table. Two different circuit alternatives including a TBS followed by only shaking tables and a combination of a spiral concentrator, TBS, and shaking tables were compared. It was found that an alternative comprising a spiral concentrator, TBS, and shaking table provided better results, required less equipment, etc. Considering these results, a provisional flowsheet was developed, and a total final concentrate of 6.8% by weight with 49.5% Cr2O3 grade and 71.51% Cr2O3 recovery could be obtained. The detailed laboratory test work was followed by plant-scale trials for the verification of the experimental findings with different circuit configurations. From roughing and scavenging spiral groups, ~85% of chromite could be obtained prior to the shaking table concentration, and this led to a minimum increase of 20% in the total recovery with less footprint of the plant, reduced water usage, and lower operating costs.
Rocznik
Strony
865--878
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Mining Engineering, Hacettepe University, Beytepe, Ankara, Turkey
  • Gördes Meta Nickel Cobalt Facility, Manisa, Turkey
  • Department of Mining Engineering, Hacettepe University, Beytepe, Ankara, Turkey
Bibliografia
  • AĞAÇAYAK, T., 2004. Topraktepe (Yeşildağ-Beyşehir-Konya) kromitlerinin zenginleştirme yöntemlerinin araştırılması. MSc Thesis, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • AMER, M., IBRAHIM, I .A., 1996. Leaching of a low grade Egyptian chromite ore.Hydrometall. 43 (1–3), 307–316.
  • ASLAN, N., KAYA, H., 2009. Beneficiation of chromite concentration waste by multi-gravity separator and highintensityinduced-roll magnetic separator. The Arabian J. Sci. Eng. 34, 2B, 285-297.
  • ATALAY, U., OZBAYOGLU, G., 1992. Beneficiation and agglomeration of chromite–its application in Turkey.Miner. Process. Extr. Metall. Rev., 9, 185–194.
  • BANERJEE, T. H., SENGUPTA, A. K., SUTAONE, A. T., GUNDEWAR, C. S., 2006. Beneficiation practices in the Sukinda valley area chromite deposits. Proc. Int. Seminar on Miner. Process.Technol., India.
  • BERGMANN, C., GOVENDER, V., CORFIELD, A. A., 2016. Using mineralogical characterisation and process modelling to simulate the gravity recovery of ferrochrome fines. Miner. Eng. 91, 2-15.
  • BOGDANOV, O.S., 1983. Textbook of ore dressing–Basic processes. 2nd edn. Nedra Press, Moscow.
  • BURT, R. O., 1984. Gravity concentration technology. Elsevier Sci.Technol., Amsterdam.
  • BURT, R. O., 1999. The role of gravity concentration in modern processing plants. Miner. Eng. 12, (11) 1291-1300.
  • CİCEK, T., COCEN, I., 2002. Applicability of Mozley gravity separator (MGS) to fine chromitetailings of Turkish chromite concentrating plants. Miner. Eng. 15, 91–93.
  • DRUMMOND, R., NICOL, S., SWANSON, A., 2002. Teetered bed separators–the Australian experience.The J. South Afr. Instit.Min.Metall. 385-392.
  • ERGUN, L., CELİK, I. B., GULSOY, O.Y., 2017. Development of flowsheet for a low grade chromite ore in Turkey. SME Annu.Conf.Expo 2017: Creating Value in a Cyclical Environment, Feb.19-22, Denver, 205-207.
  • EROL, Y., İNCE, A. R., 2012. Chrome mining competitiveness analysis of Turkey in terms of strategic management: Sectoral strengths, problems and solutions. J. World Turks, 4 (3), 53-72.
  • FENG, D., ALDRICH, C., 2004. Recovery of chromite fines from wastewater streams by column flotation. Hydrometall., 72 (3–4), 319–325.
  • GALVIN, K.P., ZHOU, J., PRICE, A. J., AGRWAL, P., IVESON, S. M., 2016. Single-stage recovery and concentration of mineral sands using a REFLUX TM Classifier. Miner. Eng. 93, 32–40.
  • GENCE, N., 1999. Beneficiation of Elazığ-Kefdağı chromite by multi-gravity separator. Turkish J. Eng. Environ. Sci., 473–475.
  • GUL, A., YUCE, E., GUNEY, A., GURKAN, V., ARSLAN, F., ONAL, G., 1995. Evaluation of low grade chromite ores from Adana-Karsanti region. 14th Turkish Min. Congr., Chamb. Min. Eng. Turkey.
  • GÜLSOY, Ö. Y., GÜLCAN, E., 2019. A new method for gravity separation: Vibrating table gravity concentrator. Sep. Purif. Technol., 211, 124-134.
  • GUNEY, A., DOGAN, M.Z., ONAL, G., 1991. Beneficiation of Etibank Uckopruchromite tailings by column flotation. Proc. Column Flotation Symp., Sudbury, Canada, 211–219.
  • GUNEY, A., ONAL, G., ATMACA, T., 2001. New aspect of chromite gravity tailing reprocessing. Miner. Eng. 14, 1527–1530.
  • KAPURE, G., KARI, C., MOHAN RAO, S., RAO,N. D., 2007. The feasibility of a slip velocity model for predicting the enrichment of chromite in a Floatex density separator. Int. J. Miner. Process., 82, 86–95.
  • KARAHAN, S., ÖZKAN, Y. Z., 2011. Türkiye Krom Madenciliğinin Geleceği. Madencilik Türkiye, Temmuz, 54-62.
  • KARI, C., KAPURE, G., MOHAN RAO, S., RAO, N. D., 2006. Predicting the chromite mineral upgradation in floatex density separator using hindered settling models ISIJ Int., 46 (7), 966–973.
  • KUMAR, C. R., TRIPATHY, S., RAO, D. S., 2009. Characterisation and pre-concentration of chromite values from plant tailings using Floatex density separator. J. Miner. Mater. Charact. Eng., 8 (5), 367-378.
  • LEROY, S., DISLAIRE, G., BASTIN, D., PIRARD, E., 2011. Optical analysis of particle size and chromite liberation from pulp samples of a UG2 ore regrinding circuit. Miner. Eng. 24, 1340–1347.
  • MISHRA, B. K., TRIPATHY, A., 2010, A preliminary study of particle separation in spiral concentrators using DEM. Int. J. Miner. Process., 94, 192–195.
  • MOHAN RAO, S., CHANDRAKALA, K., GAJANAN, K., NATH, G., RAO, N.D., 2006. Recovery of chromite values from chrome ore beneficiation plant tailings.Tata Search, Tata Steel Limited, 59–64.
  • MURTHY, Y. R., TRIPATHY, S. K., RAGHUKUMAR, C., 2011. Chrome ore beneficiation challenges & opportunities–a review. Miner. Eng. 24, 375–380.
  • OZCAN O., CELİK I. B., 2016. Beneficiation routes for upgrading iron ore tailings with a teetered bed separator. Sep. Sci. Technol., 51 (17), 2844–2855.
  • OZDAG, H., UCBAS, Y., KOCA, S., 1993. Enrichment of chromite ore by means of multi-gravity separator. Geosound, 23, 167-176.
  • OZDAG, H., UCBAS, Y., KOCA, S., 1994. Recovery of chromite from slime and table tailings by multi-gravity separator. Proc. Int. Conf.Innovat. Miner.Process., Sudbury, Canada, 267-278.
  • ÖZKAN, Ş. G., İPEKOĞLU, B., 2001. Concentration studies on chromite tailings by multi gravity separator. 17th Int. Min. Congress Exhib.Turkey-2001, 765-768.
  • ÖZSOY, B., 2016. Yellice Bölgesi Krom Cevherinin Zenginleştirme Akım Şemalarının Geliştirilmesi. Msc Thesis, 114.
  • PASCOE, R. D., POWER, M. R., SIMPSON, B., 2007. QEMSCAN analysis as a tool for improved understanding of gravity separator performance. Miner. Eng. 20, 487–495.
  • SCHULZ, N. F., 1970. Separation Efficiency.Trans. SME / AIME, 247, 81-87.
  • SÖNMEZ,E., TURGUT, B., 1998. Enrichment of low-grade Karaburhan chromite ores by gravitational methods. Atak, S., Onal, G., Celik, T. (Eds.), Innov. Min. Coal Process. Balkema, Rotterdam, The Netherlands, 723–726.
  • TRIPATHY, S. K.,RAMAMURTHY, Y., SAHU, G. P., TATHAVADKAR, V., 2010. Ultra fine chromite concentration using spiral concentrator. Proc. XI Int. Seminar Miner. Proc. Technol.(MPT-2010) Editors: R. Singh, A. Das, P. K. Banerjee, K. K. Bhattacharyya and N. G. Goswami © NML Jamshedpur, 144–150.
  • TRIPATHY, S. K., MURTHY, Y. M., 2012. Modeling and optimization of spiral concentrator for separation of ultrafine chromite. Powder Technol., 221, 387–394.
  • TRIPATHY, S. K., SINGH, V., RAMAMURTHY, Y., 2012. Improvement in Cr : Fe Ratio of Indian Chromite Ore for Ferro Chrome Production. Int. J. Min. Eng. Miner. Proc.1 (3), 101-106.
  • TRIPATHY, S.K., MURTHY, Y. R., SINGH, V., 2013. Characterisation and separation studies of Indian chromite beneficiation plant tailing. Int. J. Miner. Process. 122, 47-53.
  • TRIPATHY, S. K., BHOJA, S. K.., MURTHY Y. R., 2017. Processing of chromite ultra-fines in a water only cyclone. Int. J. Min. Sci.Tech., 27, 1057-1063.
  • UCBAS, Y., OZDAG, H., 1994. Relationships between shake frequency and amplitude in the concentration of chromite fines by multi-gravity separator. Progr. Miner. Process. Technol., Demirel and Ersayin (eds), Balkema, Rotterdam, The Netherlands, 71-76.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e56cab5-256a-4afe-aea5-453b854b74d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.