PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ionic liquids in the pretreatment of lignocellulosic biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pretreatment is a key step in the processing of lignocellulosic biomass for its transformation into chemicals and materials of biorenewable origin. Ionic liquids, with their characteristic set of unique properties, have the potential to be the basis of novel pretreatment processes with higher effectiveness and improved sustainability as compared to the current state-of-the-art processes. In this opinion paper, the author provides a perspective on possible processing strategies for this pretreatment with ionic liquids, identifying different advantages as well as challenges to be overcome.
Twórcy
  • CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela E-15782, Santiago de Compostela, Spain
Bibliografia
  • [1] World Commission on Environment and Development (United Nations), Our Common Future, Oxford University Press, New York (USA), 1987.
  • [2] https://sustainabledevelopment.un.org/?menu=1300, (2021).
  • [3] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044–4098. https://doi.org/10.1021/cr068360d.
  • [4] M. FitzPatrick, P. Champagne, M.F. Cunningham, R.A. Whitney, A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products, Bioresour. Technol. 101 (2010) 8915–8922. https://doi.org/10.1016/j.biortech.2010.06.125.
  • [5] A. Brandt, J. Gräsvik, J.P. Hallett, T. Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chem. 15 (2013) 550–583. https://doi.org/10.1039/c2gc36364j.
  • [6] Z. Usmani, M. Sharma, P. Gupta, Y. Karpichev, N. Gathergood, R. Bhat, V.K. Gupta, Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion, Bioresour. Technol. 304 (2020) 123003. https://doi.org/10.1016/j.biortech.2020.123003.
  • [7] F. Cherubini, G. Jungmeier, M. Wellisch, T. Willke, I. Skiadas, R. van Ree, E. de Jong, Toward a common classification approach for biorefinery systems, Biofuels, Bioprod. Biorefining. 3 (2009) 534–546. https://doi.org/10.1002/bbb.172.
  • [8] J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110 (2010) 3552–3599. https://doi.org/10.1021/cr900354u.
  • [9] C.G. Yoo, X. Meng, Y. Pu, A.J. Ragauskas, The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review, Bioresour. Technol. 301 (2020) 122784. https://doi.org/10.1016/j.biortech.2020.122784.
  • [10] F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497–4559. https://doi.org/10.1039/c5py00263j.
  • [11] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (2005) 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.
  • [12] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (2009) 3713–3729. https://doi.org/10.1021/ie801542g.
  • [13] S. Pal, S. Padmanabhan, S. Joy, P. Kuimbhar, K.D. Trimukhe, A.J. Varma, An Overview of Studies on Pilot Scale: Lignocellulosic Biomass Pretreatment Processes Used in the Production of Second Generation Bioethanol, Trends Carbohydr. Res. 7 (2015) 41–59.
  • [14] B.A. Simmons, S. Singh, B.M. Holmes, H.W. Blanch, Ionic liquid pretreatment, Chem. Eng. Prog. 106 (2010) 50–55.
  • [15] D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht, Comprehensive Cellulose Chemistry, Wiley-VCH, Weinheim, Germany, 1998. https://doi.org/10.1002/3527601937.
  • [16] J.H. Clark, F.E.I. Deswarte, T.J. Farmer, The integration of green chemistry into future biorefineries, Biofuels, Bioprod. Biorefining. 3 (2009) 72–90. https://doi.org/10.1002/bbb.119.
  • [17] R.A. Sheldon, Green and sustainable manufacture of chemicals from biomass: State of the art, Green Chem. 16 (2014) 950–963. https://doi.org/10.1039/c3gc41935e.
  • [18] M. Freemantle, An Introduction to Ionic Liquids, The Royal Society of Chemistry, Cambridge, UK, 2010.
  • [19] M.B. Shiflett, (Ed.), Commercial applications of Ionic Liquids, Springer, Berlin, Germany, 2020.
  • [20] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellose with ionic liquids, J. Am. Chem. Soc. (2002). https://doi.org/10.1021/ja025790m.
  • [21] K.C. Badgujar, B.M. Bhanage, Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges, Bioresour. Technol. 178 (2015) 2–18. https://doi.org/10.1016/j.biortech.2014.09.138.
  • [22] N. Muhammad, Z. Man, M.I.A. Mutalib, M.A. Bustam, C.D. Wilfred, A.S. Khan, Z. Ullah, G. Gonfa, A. Nasrullah, Dissolution and Separation of Wood Biopolymers Using Ionic Liquids, ChemBioEng Rev. 2 (2015) 257–278. https://doi.org/10.1002/cben.201500003.
  • [23] Q. Hou, M. Ju, W. Li, L. Liu, Y. Chen, Q. Yang, H. Zhao, Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems, Molecules. 22 (2017) 490. https://doi.org/10.3390/molecules22030490.
  • [24] N. Sun, M. Rahman, Y. Qin, M.L. Maxim, H. Rodríguez, R.D. Rogers, Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem. 11 (2009) 646–65. https://doi.org/10.1039/b822702k.
  • [25] A.M. da Costa Lopes, K.G. João, A.R.C. Morais, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquids as a tool for lignocellulosic biomass fractionation, Sustain. Chem. Process. 1 (2013) 3. https://doi.org/10.1186/2043-7129-1-3.
  • [26] H. Rodríguez, Ionic Liquids in the Context of Separation Processes, in: H. Rodríguez (Ed.), Ionic Liquid Better Seperation Processes, Springer-Verlag, Berlin, Germany, 2016: pp. 1–9. https://doi.org/10.1007/978-3-662-48520-0_1.
  • [27] N. Sun, H. Rodríguez, M. Rahman, R.D. Rogers, Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?, Chem. Commun. 47 (2011) 1405–1421. https://doi.org/10.1039/c0cc03990j.
  • [28] C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, C. Mitchinson, J.N. Saddler, Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies, Biotechnol. Prog. 25 (2009) 333–339. https://doi.org/10.1002/btpr.142.
  • [29] Q. Zhang, J. Hu, D.J. Lee, Pretreatment of biomass using ionic liquids: Research updates, Renew. Energy. 111 (2017) 77–84. https://doi.org/10.1016/j.renene.2017.03.093.
  • [30] D. Klein-Marcuschamer, B.A. Simmons, H.W. Blanch, Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment, Biofuels, Bioprod. Biorefining. 5 (2011) 562–569. https://doi.org/10.1002/bbb.303.
  • [31] F. Xu, J. Sun, N.V.S.N.M. Konda, J. Shi, T. Dutta, C.D. Scown, B.A. Simmons, S. Singh, Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol, Energy Environ. Sci. 9 (2016) 1042–1049. https://doi.org/10.1039/c5ee02940f.
  • [32] J. Sun, N.V.S.N.M. Konda, R. Parthasarathi, T. Dutta, M. Valiev, F. Xu, B.A. Simmons, S. Singh, One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids, Green Chem. 19 (2017) 3152–3163. https://doi.org/10.1039/c7gc01179b.
  • [33] P. Weerachanchai, J.M. Lee, Recyclability of an ionic liquid for biomass pretreatment, Bioresour. Technol. 169 (2014) 336–343. https://doi.org/10.1016/j.biortech.2014.06.072.
  • [34] M.C. Castro, H. Rodríguez, A. Arce, A. Soto, Mixtures of ethanol and the ionic liquid 1-ethyl-3-methylimidazolium acetate for the fractionated solubility of biopolymers of lignocellulosic biomass, Ind. Eng. Chem. Res. 53 (2014) 11850–11861. https://doi.org/10.1021/ie501956x.
  • [35] C.L. Chambon, V. Fitriyanti, P. Verdía, S.M. Yang, S. Hérou, M.M. Titirici, A. Brandt-Talbot, P.S. Fennell, J.P. Hallett, Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water, ACS Sustain. Chem. Eng. 8 (2020) 3751–3761. https://doi.org/10.1021/acssuschemeng.9b06939.
  • [36] Q. Xin, K. Pfeiffer, J.M. Prausnitz, D.S. Clark, H.W. Blanch, Extraction of lignins from aqueous-ionic liquid mixtures by organic solvents, Biotechnol. Bioeng. 109 (2012) 346–352. https://doi.org/10.1002/bit.24337.
  • [37] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature. 398 (1999) 28–29. https://doi.org/10.1038/19887.
  • [38] P.S. Barber, C.S. Griggs, G. Gurau, Z. Liu, S. Li, Z. Li, X. Lu, S. Zhang, R.D. Rogers, Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide, Angew. Chemie - Int. Ed. 52 (2013) 12350–12353. https://doi.org/10.1002/anie.201304604.
  • [39] A. Stark, K.R. Seddon, Ionic liquids, in: A. Seidel (Ed.), Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., vol. 26, Wiley, Hoboken, New Jersey, USA, 2007: pp. 836–920.
  • [40] J.M. Andanson, A.A.H. Pádua, M.F. Costa Gomes, Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid, Chem. Commun. 51 (2015) 4485–4487. https://doi.org/10.1039/c4cc10249e.
  • [41] M.C. Castro, A. Arce, A. Soto, H. Rodríguez, Influence of Methanol on the Dissolution of Lignocellulose Biopolymers with the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate, Ind. Eng. Chem. Res. 54 (2015) 9605–9614. https://doi.org/10.1021/acs.iecr.5b02604.
  • [42] M.K. Wojtczuk, N. Caeiro, H. Rodríguez, E. Rodil, A. Soto, Recovery of the ionic liquids [C2mim][OAc] or [C2mim][SCN] by distillation from their binary mixtures with methanol or ethanol, Sep. Purif. Technol. 248 (2020) 117103. https://doi.org/10.1016/j.seppur.2020.117103.
  • [43] C.A. Pena, A. Soto, A.W.T. King, H. Rodríguez, Improved Reactivity of Cellulose via Its Crystallinity Reduction by Nondissolving Pretreatment with an Ionic Liquid, ACS Sustain. Chem. Eng. 7 (2019) 9164–9171. https://doi.org/10.1021/acssuschemeng.8b06357.
  • [44] D. Rico del Cerro, T. V. Koso, T. Kakko, A.W.T. King, I. Kilpeläinen, Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate, Cellulose. 27 (2020) 5545–5562. https://doi.org/10.1007/s10570-020-03044-6.
  • [45] C. Hilgers, P. Wasserscheid, Quality aspects and other questions related to commercial ionic liquid production., in: P. Wasserscheid, T. Welton (Eds.), Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, Germany, 2003: pp. 21–33.
  • [46] L. Chen, M. Sharifzadeh, N. Mac Dowell, T. Welton, N. Shah, J.P. Hallett, Inexpensive ionic liquids: [HSO4]--based solvent production at bulk scale, Green Chem. 16 (2014) 3098–3106. https://doi.org/10.1039/c4gc00016a.
  • [47] M. Petkovic, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Ionic liquids: A pathway to environmental acceptability, Chem. Soc. Rev. 40 (2011) 1383–1403. https://doi.org/10.1039/c004968a.
  • [48] K.S. Egorova, V.P. Ananikov, Toxicity of ionic liquids: Eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization, ChemSusChem. 7 (2014) 336–360. https://doi.org/10.1002/cssc.201300459.
  • [49] J.M. Gomes, S.S. Silva, R.L. Reis, Biocompatible ionic liquids: Fundamental behaviours and applications, Chem. Soc. Rev. 48 (2019) 4317–4335. https://doi.org/10.1039/c9cs00016j.
  • [50] A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran, V. Stavila, S. Venkatachalam, M.G. Hahn, B.A. Simmons, S. Singh, Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E3587–E3595. https://doi.org/10.1073/pnas.1405685111.
  • [51] T. Liebert, T. Heinze, Interaction of ionic liquids with polysaccharides 5. Solvents and reaction media for the modification of cellulose, BioResources. 3 (2008) 576–601. https://doi.org/10.15376/biores.3.2.576-601.
  • [52] G. Ebner, S. Schiehser, A. Potthast, T. Rosenau, Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids, Tetrahedron Lett. 49 (2008) 7322–7324. https://doi.org/10.1016/j.tetlet.2008.10.052.
  • [53] M.T. Clough, K. Geyer, P.A. Hunt, J. Mertes, T. Welton, Thermal decomposition of carboxylate ionic liquids: Trends and mechanisms, Phys. Chem. Chem. Phys. 15 (2013) 20480–20495. https://doi.org/10.1039/c3cp53648c.
  • [54] O. Stolarska, A. Pawlowska-Zygarowicz, A. Soto, H. Rodríguez, M. Smiglak, Mixtures of ionic liquids as more efficient media for cellulose dissolution, Carbohydr. Polym. 178 (2017) 277–285. https://doi.org/10.1016/j.carbpol.2017.09.025.
  • [55] G. Gurau, H. Wang, Y. Qiao, X. Lu, S. Zhang, R.D. Rogers, Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing, Pure Appl. Chem. 84 (2012) 745–754. https://doi.org/10.1351/PAC-CON-11-11-10.
  • [56] C.M. Alder, J.D. Hayler, R.K. Henderson, A.M. Redman, L. Shukla, L.E. Shuster, H.F. Sneddon, Updating and further expanding GSK’s solvent sustainability guide, Green Chem. 18 (2016) 3879–3890. https://doi.org/10.1039/c6gc00611f.
  • [57] A. Toscan, A.R.C. Morais, S.M. Paixão, L. Alves, J. Andreaus, M. Camassola, A.J.P. Dillon, R.M. Lukasik, Effective Extraction of Lignin from Elephant Grass Using Imidazole and Its Effect on Enzymatic Saccharification to Produce Fermentable Sugars, Ind. Eng. Chem. Res. 56 (2017) 5138–5145. https://doi.org/10.1021/acs.iecr.6b04932.
  • [58] C.W. Zhang, S.Q. Xia, P.S. Ma, Facile pretreatment of lignocellulosic biomass using deep eutectic solvents, Bioresour. Technol. 219 (2016) 1–5. https://doi.org/10.1016/j.biortech.2016.07.026.
  • [59] X. Tang, M. Zuo, Z. Li, H. Liu, C. Xiong, X. Zeng, Y. Sun, L. Hu, S. Liu, T. Lei, L. Lin, Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents, ChemSusChem. 10 (2017) 2696–2706. https://doi.org/10.1002/cssc.201700457.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e53925b-3c07-414d-a255-b2f27a6039b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.