PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Cast Iron Substitute Thermal Capacity Using the Experimental Data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the problem of the cast iron substitute thermal capacity estimation is discussed. This parameter appears when the macroscopic mathematical model of alloys solidification bases on the one domain method (fixed domain approach). In the case of cast iron the form of function describing the course of temperature-dependent thermal capacity is quite complex. Using the experimental data, in particular the measured cooling, heating curves at the set of points selected in the casting – mould domain the identification problem has been solved using the gradient methods. The results presented concern the gray iron 3.21% C and 1.9% Si.
Twórcy
autor
  • The Silesian University of Technology, Facult y of Mechanical Engineering, Konarskiego 18A, 44-100 Gliwice, Poland
  • The Silesian University of Technology, Facult y of Mechanical Engineering, Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • University of Occupational Safety Management in Katowice, 8 Bankowa str., 40-007 Katowice, Poland
Bibliografia
  • [1] M. Muhieddine, E. Canot, R. March, Various approaches for solving problems in heat conduction with phase change, International Journal on Finite 6 (1) 1-20 (2009).
  • [2] B. Mochnacki, E. Majchrzak, Numerical modeling of casting solidification using generalized finite difference method, Materials Science Forum 638-642, 2676-2681 (2010).
  • [3] W. Piekarska, M. Kubiak, Three-dimensional model for numerical analysis of thermal phenomena in laser-arc hybrid welding process, International Journal of Heat and Mass Transfer 54, 23-24, 4966-4974 (2011).
  • [4] G. Comini, L. Del Giudice, Thermal aspects of cryosurgery, Journao of Heat Transfer 98, 543-549 (1976).
  • [5] M. Muhieddine, E. Canot, R. March, Heat transfer modeling in saturated porous media and identification of the thermophysical properties of the soil by inverse problem, Applied Numerical Mathematics 62, 1026-1040 (2012).
  • [6] B. Mochnacki, R. Szopa, Identification of alloy latent heat using the data of thermal and differential analysis, Journal of Theoretical and Applied Mechanics 49, 4, 1019-1028 (2011).
  • [7] B. Mochnacki, E. Majchrzak, Identification of macro and micro parameters in solidification model, Bulletin of the Polish Academy of Sciences, Technical Sciences 55, 1, 107-113 (2007).
  • [8] E. Majchrzak, B. Mochnacki, J.S. Suchy, Identification of substitute thermal capacity of solidifying alloy, Journal of Theoretical and Applied Mechanics 46, 2, 257-268 (2008).
  • [9] E. Hetmaniok, I. Nowak, D. Słota, A. Zielonka, Determination of optimal parameters for the immune algorithm used for solving inverse heat conduction problems with and without a phase change, Numerical Heat Transfer Part B - Fundamentals 62, 6, 462-478 (2012).
  • [10] O. M. Alifanov, Inverse heat transfer problems, Springer- Verlag (1994).
  • [11] K. Kurpisz, A. Nowak, Inverse Thermal Problems, Southampton, Boston: Computational Mechanics Publications (1995).
  • [12] Ch. H. Huang, J. Y. Yan, An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, International Journal, of Heat and Mass Transfer 38, 18, 3433-3441 (1995).
  • [13] R. Grzymkowski, D. Słota, One-phase inverse Stefan problem solved by Adomian decomposition method, Computers & Mathematics with Applications 51, 1, 33-40 (2006).
  • [14] V. Grozdani, Finite-difference methods for simulating the solidification of castings, Materials and Technology 43, 5, 233-237 (2009).
  • [15] A. Rouboa, E. Monteiro, Heat transfer in multi-block grid during solidification: performance of finite differences and finite volume method, Journal of Materials Processing Technology 204, 451-458 (2008).
  • [16] A. A. Samarski, The theory of difference schemes, Marcel Dekker, Inc., New York, Basel (2001).
  • [17] M. Ciesielski, A multiscale approach to numerical modeling of solidification, International Journal for Multiscale Computational Engineering 8, 3, 251-257 (2010).
  • [18] E. Majchrzak, J. Mendakiewicz, Numerical analysis of cast iron solidification process, Journal of Materials Processing Technology 53, 1-2, 285-292 (1995).
  • [19] A. Reikher, K. M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, International Journal of Heat and Mass Transfer 60, 797-805 (2013).
  • [20] E. Majchrzak, M. Dziewoński, G. Kałuża, Numerical algorithm of cast steel latent heat identification, Journal of Achievements of Materials and Manufacturing Engineering 22, 1, 61-64 (2007).
  • [21] E. Hensel, Inverse theory and applications for engineers, Prentice Hall, New Yersey (1991).
  • [22] M. N. Ozisik, H. R. B. Orlande, Inverse heat transfer: Fundamentals and applications, Taylor and Francis, Pennsylvania, (1999).
  • [23] I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient method for linear inverse problems with sparsity constraints, Journal of Fourier Analysis and Applications 14, 764-792 (2008).
  • [24] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2, 1, 183-202 (2009).
  • [25] R. Szopa, Sensitivity analysis and inverse problems in the thermal theory of foundry processes, Publications of the Częstochowa University of Technology, Częstochowa (2006) - in Polish.
  • [26] M. Kleiber, Parameter sensitivity, J.Wiley & Sons Ltd., Chichester (1997).
  • [27] K. Dems, B. Rousselet, Sensitivity analysis for transient heat conduction in a solid body, Structural Optimization 17, 36-45 (1999).
  • [28] R. Grzymkowski, Inverse problems in the thermal theory of foundry processes. Publ. of the Silesian Univ. of Techn., Mechanics 105, Gliwice, 1991 (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e52d59b-ca43-446a-a669-31cd8c4674d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.