PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
The present study deals with the primary damped natural frequency of dielectric composite beam reinforced with graphene platelet (GPL). The beam is subjected to pre-stress in the longitudinal direction and external electrical loading throughout the beam thickness direction for tuning the frequency characteristics. The material properties of the composites required for structural analysis are determined by effective medium theory (EMT) and rule of mixture. Using Timoshenko beam theory and Hamilton’s principle, the governing equations for damped nonlinear free vibration of the beam are derived and solved numerically by differential quadrature (DQ) and direct iterative methods. The effects of the attributes of the electrical loading and the GPL fillers on the damped free vibration characteristics are investigated. The analysis shows that when the GPL concentration is greater than the percolation threshold, the voltage of the electrical loading and GPL aspect ratio start to play a vital role in the damped vibration. The nonlinear damped frequency of the hinged-hinged (H–H) beam decreases by 83.8% when the voltage increases from 0 to 30 V. It is found that there exist two critical AC (alternating current) frequencies, i.e., approximate 10−3 Hz and 102 Hz, around which the primary damped natural frequency has a sudden jump as AC frequency either slightly increases or decreases. The vibration characteristics presented demonstrate the potential of developing smart composite structures whose vibration characteristics can be actively tuned by changing the attributes of the applied electrical loading.
Rocznik
Strony
art. no. e53, 2022
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
Bibliografia
  • 1. Kunikowska A, Szymanski W, Jedrzejczak A, Lipa S, Galazka M, Szlachetka M, Kula P. High strength metallurgical graphene as an additional reinforcing phase for carbon fibre composites. Arch Civ Mech Eng. 2020;20:25.
  • 2. Vigneshwaran GV, Shanmugavel BP, Paskaramoorthy R, Harish S. Tensile, impact, and mode-I behaviour of glass fiber-reinforced polymer composite modified by graphene nanoplatelets. Arch Civ Mech Eng. 2020;20:94.
  • 3. Kiziltas A, Tamrakar S, Rizzo J, Mielewski D. Characterization of graphene nanoplatelets reinforced sustainable thermoplastic elastomers. Compos Part C. 2021;6:100172.
  • 4. Pereira AT, Henriques PC, Costa PC, Martins MCL, Magalhães FD, Gonçalves IC. Graphene oxide-reinforced poly(2-hydroxy-ethyl methacrylate) hydrogels with extreme stiffness and high-strength. Compos Sci Technol. 2019;184:107819.
  • 5. Li Y, Ma Y, Lichtfouse E, Song J, Gong R, Zhang J, Wang S, Xiao L. In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring. J Hazard Mater. 2022;421:126718.
  • 6. Liu B, Sun H, Peng T, Zhi X. 3D core-shell poly(aniline-co-pyrrole)/reduced graphene oxide composite for supercapacitor performance. Diam Relat Mater. 2021;118:108498.
  • 7. Tang X, Zhou L, Yu H, Dai Y, Ouyang J, Liu Z, Wang Y, Le Z, Adesina AA. Nanoarchitectonics of poly(vinyl alcohol)/graphene oxide composite electrodes for highly efficient electrosorptive removal of U(VI) from aqueous solution. Sep Purif Technol. 2022;278:119604.
  • 8. Qiu M, Wang D, Zhang L, Li M, Liu M, Fu S. Electrochemical exfoliation of water-dispersible graphene from graphite towards reinforcing the mechanical and flame-retardant properties of poly (vinyl alcohol) composites. Mater Chem Phys. 2020;254:123430.
  • 9. Najafishad S, Manesh HD, Zebarjad SM, Hataf N, Mazaheri Y. Production and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng. 2020;20:57.
  • 10. Mazaheri M, Payandehpeyman J, Khamehchi M. A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets. Carbon. 2020;169:264–75.
  • 11. Sarkhan NA, Rahman ZA, Zakaria A, Ali AMM. Enhanced electrical properties of poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) using graphene oxide. Mater Today: Proc. 2019;17:484–9.
  • 12. Gaikwad SD, Goyal RK. Effect of manufacturing processes on percolation threshold and electrical conductivity of polymer/multi layers graphene nanocomposites. Diam Relat Mater. 2018;85:13–7.
  • 13. Lin B, Li Z-T, Yang Y, Li Y, Lin J-C, Zheng X-M, He F-A, Lam K-H. Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos Sci Technol. 2019;172:58–65.
  • 14. Fan P, Wang L, Yang J, Chen F, Zhong M. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology. 2012;23:365702.
  • 15. Fouaidi M, Jamal M, Zaite A, Belouaggadia N. Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method. Aerosp Sci Technol. 2021;110:106479.
  • 16. Shen H-S, Lin F, Xiang Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 2017;90:899–914.
  • 17. Shen H-S, Xiang Y, Fan Y. Nonlinear vibration of thermally post-buckled FG-GRC laminated beams resting on elastic foundations. Int J Struct Stab Dyn. 2019;19:1950051.
  • 18. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H. Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct. 2020;150:106683.
  • 19. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H. Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control. 2020;27:101–18.
  • 20. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong LK. Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech. 2020;11:1950102.
  • 21. Li Q, Wu D, Chen X, Liu L, Yu Y, Gao W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. Int J Mech Sci. 2018;148:596–610.
  • 22. Liu Z, Yang C, Gao W, Wu D, Li G. Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci. 2019;137:37–56.
  • 23. Gao K, Gao W, Chen D, Yang J. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct. 2018;204:831–46.
  • 24. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H. Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol. 2019;26:461–73.
  • 25. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H. Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mech. 2019;49:738–62.
  • 26. Wang Y, Feng C, Yang J, Zhou D, Liu W. Static response of functionally graded graphene platelet–reinforced composite plate with dielectric property. J Intell Mater Syst Struct. 2020;31:2211–28.
  • 27. Wang Y, Feng C, Yang J, Zhou D, Wang S. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method. Comput Methods Appl Mech Eng. 2021;379:113761.
  • 28. Wang Y, Zhou Y, Feng C, Yang J, Zhou D, Wang S. Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate. Appl Math Model. 2022;101:239–58.
  • 29. Yang Z, Feng C, Yang J, Wang Y, Lv J, Liu A, Fu J. Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aer-osp Sci Technol. 2020;107:106326.
  • 30. Tong Z, Wang Y, Feng C, Zhu D, Jin S. Parametric study on mechanical, thermal and electrical properties of graphene reinforced composites by effective medium theory. Int J Appl Mech. 2021;13:2150008.
  • 31. Xia X, Wang Y, Zhong Z, Weng GJ. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon. 2017;111:221–30.
  • 32. Weng GJ. A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech Mater. 2010;42:886–93.
  • 33. Huang M, Wu P, Guan G, Liu W. Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion. Acta Mech. 2010;217:17–38.
  • 34. Taya M. Electronic composites. Modeling, characterization, processing, and MEMS applications. Cambridge: Cambridge University Press; 2005.
  • 35. Hashemi R, Weng GJ. A theoretical treatment of graphene nano-composites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon. 2016;96:474–90.
  • 36. Dyre JC. A simple model of ac hopping conductivity in disordered solids. Phys Lett A. 1985;108:457–61.
  • 37. Nayfeh AH, Younis MI, Abdel-Rahman EM. Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 2007;48:153–63.
  • 38. Taya M, Mura T. Dynamic plastic behavior of structures under impact loading investigated by the extended Hamilton’s principle. Int J Solids Struct. 1974;10:197–209.
  • 39. Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct. 2017;161:111–8.
  • 40. Wang X. Differential quadrature and differential quadrature based element methods. Britain: Butterworth-Heinemann; 2015.
  • 41. Kusagur SM, Arunkumar G, Manjunath TC. Multivariable modelling of intelligent flexible mechanical structures using smart materials with FEM, Euler–Bernoulli beam theory, state space and multi-sensor data fusion techniques. Mater Today: Proc. 2021;37:354–62.
  • 42. Ibrahim SM, Patel BP, Nath Y. Modified shooting approach to the non-linear periodic forced response of isotropic/composite curved beams. Int J Nonlin Mech. 2009;44:1073–84.
  • 43. Kitipornchai S, Ke LL, Yang J, Xiang Y. Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J Sound Vib. 2009;324:962–82.
  • 44. He F, Lau S, Chan HL, Fan J. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater. 2010;21:710–5.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Identyfikator YADDA
bwmeta1.element.baztech-9e497c62-a5e4-4208-847c-45cd8b42d665