Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Sorpcja chlorowodoru w komorze paleniskowej reaktora fluidyzacyjnego
Języki publikacji
Abstrakty
Combustion of fuels, including renewable fuels and thermal treatment of waste (CFCs, pesticides), is associated with emissions of pollutants including halogens. The reversible process of sorption/desorption of HCl, in a fluidized (bubbling) bed reactor (BFB), during co-combustion of Cl-materials, was carried out. The thermal decomposition of methylene chloride (DCM, CH2Cl2) in an inert sand bed with the addition of the hydroxyapatite sorbent (HAp, Ca5(PO4)3(OH)) was investigated. The process parameters were as follows: temperature - 930 °C, the air excess - 1.3, stream rate of CH2Cl2 - 50 cm3/h. The concentration of HCl, CCl4, CHCl3, CH2Cl2, CH3Cl, COCl2 in the exhaust gases were monitored online with FTIR spectroscopy. The main chlorine product was hydrogen chloride. Samples of unprocessed HAp, taken from the bed during the process, and solid apatite residues were analyzed by X-ray diffraction (XRD). The content of chlorapatite (Ca5(PO4)3Cl) in the analyzed samples was respectively 11, 53 and 19 %. X-ray fluorescence (XRF) analysis showed the molar ratio of Ca:P:Cl was: 1.00:0.36:0.01, 1.00:0.36:0.09, 1.00:0.37:0.04 respectively. The HAp could be used as an sorbent of the HCl(g) during combustion of materials containing chlorine.
Czasopismo
Rocznik
Tom
Strony
69--80
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland, phone +48 12 628 25 92
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland, phone +48 12 628 27 66
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland, phone +48 12 628 27 66
Bibliografia
- [1] Vassilev SV, Eskenazyb GM, Vassilevaa CG. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel. 2000;79:903-921. DOI: 10.1016/S0016-2361(99)00236-7.
- [2] Yudovich YE, Ketris MP, Chlorine in coal: A review. Int J Coal Geol. 2006;67:127-144. DOI: 10.1016/j.coal.2005.09.004.
- [3] Spears DA, Zheng Y. Geochemistry and origin of elements in some UK coals. Int J Coal Geol. 1999;38(3-4):161-179. DOI: 10.1016/S0166-5162(98)00012-3.
- [4] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913-933. DOI: 10.1016/j.fuel.2009.10.022.
- [5] Tillman, DA, Duong D, Miller B. Chlorine in solid fuels fired in pulverized fuel boilers-sources, forms, reactions, and consequences: A literature review. Energy Fuels. 2009;23(7):3379-3391. DOI: 10.1021/ef801024s.
- [6] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.
- [7] Toxicological profile for DDT, DDE, and DDD. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; Atlanta: 2002. http://www.atsdr.cdc.gov/toxprofiles/tp35.pdf.
- [8] van Loon GW, Duffy SJ. Environmental chemistry. Warszawa: WN PWN; 2007. ISBN: 9788301153243.
- [9] Jenkins BM, Baxter LL, Miles TR Jr, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54:17-46. DOI: 10.1016/S0378-3820(97)00059-3.
- [10] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). OJ L 334, 17.12.2010. 17-119. https://eur-lex.europa.eu/eli/dir/2010/75/oj.
- [11] Zhang M, Buekens A, Li X. Dioxins from biomass combustion: an overview. Waste Biomass Valor. 2017;8:1-20. DOI 10.1007/s12649-016-9744-5.
- [12] Wey MY, Liu KY, Yu WJ, Lin CL, Chang FY. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Manage. 2008;28(2):406-415. DOI: 10.1016/j.wasman.2006.12.008.
- [13] Lundin L, Jansson S. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals. Chemosphere. 2014;94:20-26. DOI: 10.1016/j.chemosphere.2013.01.090.
- [14] van den Berg M, Birnbaum L, Bosveld AT, Brunström B, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998;106:775-792. DOI: 10.2307/3434121.
- [15] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.
- [16] Altobelli R, de Oliveira MCL. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros Sci. 2013;76:6-26. DOI: 10.1016/j.corsci.2013.07.013.
- [17] Gruber T, Retschitzegger S, Scharler R, Obernberger I. Dominating high temperature corrosion mechanisms in low alloy steels in wood chips fired boilers. Energy Fuels. 2016;30(3):2385-2394. DOI: 10.1021/acs.energyfuels.5b02290.
- [18] Theis M, Skrifvars BJ, Zevenhoven M, Hupa M. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel. 2006;85(14-15):1992-2001. DOI: 10.1016/j.fuel.2006.03.015.
- [19] Fraissler G, Joller M, Brunner T, Obernberger I. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination. Chem Eng Process. Process Intensification. 2009;8(1):380-388, DOI: 10.1016/j.cep.2008.05.003.
- [20] Lecomte T, de la Fuente JFF, Neuwahl F, Canova M, Pinasseau A, Jankov I, et al. Best Available Techniques (BAT). Reference Document for the Large Combustion Plants. Luxembourg: Publications Office of the European Union; 2017. ISBN: 9789279743030. DOI: 10.2760/949.
- [21] Weinell CE, Jensen PI, Dam-Johansen K, Livbjerg H. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity. Ind Eng Chem Res. 1992;31:164-171. DOI: 10.1021/ie00001a023.
- [22] Zhang C, Wang Y, Yang Z, Xu M. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis. Fuel. 2006;85(14-15):2034-2040. DOI: 10.1016/j.fuel.2006.04.009.
- [23] Wey MY, Chen JC, Wu HY, Yu WJ, Tsai TH. Formations and controls of HCl and PAHs by different additives during waste incineration. Fuel. 2006; 85(5-6):755-763. DOI: 10.1016/j.fuel.2005.09.011.
- [24] Fujita S, Suzuki K, Ohkawa M, Shibasaki Y, Mori T. Reaction of hydrogrossular with hydrogen chloride gas at high temperature. Chem Mater. 2001;13:2523-2527. DOI: 10.1021/cm000863r.
- [25] Olek M, Baron J, Żukowski W. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed. Chem Central J. 2013;7:2. DOI: 10.1186/1752-153X-7-2.
- [26] Tõnsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110(2):647-659. DOI: 10.1007/s10973-011-1877-y.
- [27] Baron J, Bulewicz EM, Zabagło J, Żukowski W. Propagation of reaction between bubbles with a gas burning in a fluidised bed. Flow Turbul Combust. 2012;88(4):479-502. DOI: 10.1007/s10494-011-9362-z.
- [28] Żukowski W. A simple model for explosive combustion of premixed natural gas with air in a bubbling fluidized bed of inert sand. Combust Flame. 2003;134:399-409. DOI: 10.1016/S0010-2180(03)00139-1.
- [29] Baron J, Żukowski W, Migas P. Premixed LPG + air combustion in a bubbling FBC with variable content of solid particles in the bubbles. Flow Turbul Combust. 2018;101(3):953-969. DOI: 10.1007/s10494-018-9925-3.
- [30] Deydier E, Guilet R, Sarda S, Sharrock P. Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”. J Hazard Mater. 2005;121(1-3):141-148. DOI: 10.1016/j.jhazmat.2005.02.003.
- [31] Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807. DOI: 10.1007/s10853-007-1993-z.
- [32] Gulyurtlu I, Pinto F, Abelha P, Lopes H, Crujeira AT. Pollutant emissions and their control in fluidised bed combustion and gasification. In: Scala F, editor. Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. Cambridge: Woodhead Publishing; 2013. ISBN: 9780857095411. DOI: 10.1533/9780857098801.2.435.
- [33] Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807-1813. DOI: 10.1016/S0142-9612(99)00076-9.
- [34] Demnati I, Grossin D, Combes C, Parco M, Braceras I, Rey C. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings. Biomed Mater. 2012;7(5):1-10. DOI:10.1088/1748-6041/7/5/054101.
- [35] Moseke C, Gbureck U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia. 2010;6(10): 3815-3823. DOI: 10.1016/j.actbio.2010.04.020.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e419a98-35c1-4db7-9b35-8f31295681da