PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dusty time fractional MHD flow of a Newtonian fluid through a cylindrical tube with a non-Darcian porous medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, time fractional flow of a Newtonian fluid through a uniform cylindrical tube with a non-Darcy porous medium in the presence of dust particles under the application of a uniform magnetic field along the meridian axis is discussed. The implication of time fractional order differential equations in flow problems and some benefits of fractional order differential equations are highlighted. The Laplace Decomposition Method (LDM) is used to obtain an approximate solution to the proposed problem. The impact of fractional order and integer order of the differential equations and also the effects of some important parameters on the flow system are shown in the forms of graphs and a table. The convergence test of the solution is done. It has been observed that the fractional order differential equation reveals more things like the decrease in dust particle velocity due to the increase in magnetic field for fractional order derivatives, whereas, no noticeable change in dust particle velocity due to the change in magnetic field for integer order derivatives are observed. Also, it is observed that an increase in a fractional order derivative decrease the fluid as well as the dust particle velocities. The skin friction at the walls of the tube are also highlighted.
Rocznik
Strony
101--114
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Mathematics, Assam University Silchar, India
  • Department of Mathematics, Assam University Silchar, India
Bibliografia
  • [1] Jafari, H., Khalique, C.M., & Nazari, M. (2011). Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion wave equations. Applied Mathematics Letters, 24(11), 1799-1805.
  • [2] Kumar, S., Kumar, D., Abbasbandy, S., & Rashidi, M. (2014). Analytical solution of fractional Navier-Stokes equation by using modifed Laplace decomposition method. Ain Shams Engineering Journal, 5(2), 569-574.
  • [3] Ali, A. & Shah, K. (2018). Analytical solution of general Fisher’s equation by using Laplace Adomian decomposition method. Journal of Pure and Applied Mathematics, 2(3), 01-04.
  • [4] Yousef, H.M. & Ismail, A.M. (2018). Application of the Laplace Adomian decomposition method for solution system of delay differential equations with initial value problem. AIP Conference Proceedings, 1974(1), 020038.
  • [5] Mahmood, S., Shah, R., Arif, M. (2019). Laplace Adomian decomposition method for multidimensional time fractional model of Navier-Stokes equation. Symmetry, 11(2), 149.
  • [6] Eldesoky, I.M. (2012). Slip effects on the unsteady MHD pulsatile blood flow through porous medium in an artery under the effect of body acceleration. International Journal of Mathematics and Mathematical Sciences, 2012.
  • [7] Kumar, A., Chandel, R., Shrivastava, R., Shrivastava, K., & Kumar, S. (2016). Mathematical modeling of blood flow in an inclined tapered artery under mhd effect through porous medium. International Journal of Pure and Applied Mathematical Sciences, 9(1), 75-88.
  • [8] Shah, N.A., Vieru, D., & Fetecau, C. (2016). Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. Journal of Magnetism and Magnetic Materials, 409, 10-19.
  • [9] Topoliceanu, F., Varvara, G., & Zaharia, D. (1997). The blood two-phase dusty fluid flow modeling. IFAC Proceedings Volumes, 30(2), 39-44.
  • [10] Attia, H.A. (2011). Transient circular pipe mhd flow of a dusty fluid considering the hall effect. Kragujevac Journal of Science, 33, 15-23.
  • [11] Gireesha, B., Madhura, K., & Bagewadi, C. (2012). Flow of an unsteady dusty fluid through porous media in a uniform pipe with sector of a circle as cross-section. International Journal of Pure and Applied Mathematics, 76(1), 29-47.
  • [12] Attia, H., Aboul-Hassan, A., Abdeen, M., & Abdin, A.E.D. (2014). Mhd flow of a dusty fluid between two in finite parallel plates with temperature dependent physical properties under exponentially decaying pressure gradient. Bulgarian Chemical Communications, 46, 320-329.
  • [13] Shah, N.A., Vieru, D., & Fetecau, C. (2016). Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. Journal of Magnetism and Magnetic Materials, 409, 10-19.
  • [14] Hamid, M., Zubair, T., Usman, M., & Haq, R.U. (2019) Numerical investigation of fractionalorder unsteady natural convective radiating flow of nanofluid in a vertical channel. AIMS Mathematics, 4(5), 1416-1429.
  • [15] Spiegel, M.R. (1965). Laplace Transforms. New York: McGraw-Hill.
  • [16] Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Vol. 198). Elsevier.
  • [17] Adomian, G. (1998). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501-544.
  • [18] Hosseini, M.M. & Nasabzadeh, H. (2006). On the convergence of Adomian decomposition method. Applied Mathematics and Computation, 182(1), 536-543.
  • [19] Nagaraju, G., & Garvandha, M., (2019). Magnetohydrodynamic viscous fluid flow and heat transfer in a circular pipe under an externally applied constant suction. Heliyon, e01281.
  • [20] Matta, A., & Nagaraju, G., (2018). Order of chemical reaction and convective boundary condition effects on micropolar fluid flow over a stretching sheet. AIP Advances, 8, 115212.
  • [21] Ramana Murthy, J.V., & Nagaraju, G., (2009). Flow of a couple stress fluid generated by a circular cylinder subjected to longitudinal and torsional oscillations. Contemporary Engineering Sciences, 2(10), 451-461.
  • [22] Nagaraju, G., &Garvandha, M., (2020). Impacts of variable thermal conductivity and mixed convective stagnation-point flow in a couple stress nanofluid with viscous heating and heat source. Heat Transfer, 1-21.
  • [23] Ramana Murthy, J.V., Nagaraju, G., & Sai, K.S., (2012). Numerical solution for MHD flow of micro polar fluid between two concentric rotating cylinders with porous lining. International Journal of Nonlinear Science, 13(2), 183-193.
  • [24] Nagaraju, G., Matta, A., & Kaladhar, K., (2017). The effects of Soret and Dufour, chemical reaction, Hall and ion currents on magnetized micropolar flow through co-rotating cylinders. AIP Advances, 7, 115201.
  • [25] Nagaraju, G., & Garvandha, M.,(2020). The influence of magnetized couple stress heat, and mass transfer flow in a stretching cylinder with convective boundary condition, cross-diffusion, and chemical reaction. Thermal Science and Engineering Progress, 18, 100517.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e3e6cfe-1451-42ab-8fd3-137b70cc6c49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.