PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of degradation factor effect on solar panels performance after eight years of life operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most high-quality solar panel products suffer from performance degradation at an annual rate of 0.4–0.5% per year during their specified normal operational life of 25–30 years. This percentage increases in areas with hot climates and roof photovoltaic systems and varies according to the quality, guarantee and reliability of the solar panel manufacturers. The aim of this research is to assess the degradation rates of solar panels in the city of Baghdad and to determine their impact on the investment feasibility of residential systems under hot climatic conditions. In this research, an evaluation of performance of photovoltaic solar panels working in a 2 kWp system connected to the electrical grid was done under the operational climatic conditions in the evaluation area (Baghdad, Iraq). The degradation rate of all photovoltaic system modules during the operation time from 2015–2023 is equal to 4.74% (0.593% / year). For comparison, a new monocrystalline solar panel of power 185.94 Wp with an old solar panel of monocrystalline type of power 183.33 Wp (which previously was installed in 2015) were installed at the same tilt angle of 30° , and evaluated during the operation months starting in March and ending in November of the year 2023. The degradation rates per year of an aged solar panel were determined to range from 0.441% to 0.850%, with an average value of 0.788% per year. After undergoing a correction process to align the maximum power values of the old and new solar panels, the corrected degradation rates per year values ranged from 0.391% to 0.684% per year, with an average value of 0.621% per year, which closely matches the degradation rate of all photovoltaic system modules at 0.593% per year.
Rocznik
Strony
221--226
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Materials Researches, Advanced Materials Research Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
  • Ministry of Science and Technology, Directorate of Environment and Renewable Energy, Energy Management Center, 55509 Al-Jadriya, Iraq
Bibliografia
  • [1] Aboagye, B., Gyamfi, S., Ofosu, E. A., & Djordjevic, S. (2021). Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana. Energy Reports, 7,6921–6931. doi: 10.1016/j.egyr.2021.10.097
  • [2] Aboagye, B., Gyamfi, S., Ofosu, E. A., & Djordjevic, S. (2022). Characterisation of degradation of photovoltaic (PV) module technologies in different climatic zones in Ghana. Sustainable Energy Technologies and Assessments, 52, 102034. doi: 10.1016/j.seta.2022.102034
  • [3] Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. doi: 10.1016/j.rser.2022.112160
  • [4] Campbell, J., Zemen, Y., Richardson, B., & Striner, B. (2012). Photovoltaic module performance and degradation as compared in distinct climatic regions. 2012 38th IEEE Photovoltaic Specialists Conference (pp. 001250–001255). 03-08 June, Austin, USA. doi: 10.1109/PVSC.2012.6317829
  • [5] Carr, A.J., & Pryor, T.L. (2004). A comparison of the performance of different PV module types in temperate climates. Solar energy, 76(1–3), 285–294. doi: 10.1016/j.solener.2003.07.028
  • [6] Da Fonseca, J.E.F., de Oliveira, F.S., Prieb, C.W.M., & Krenzinger, A. (2020). Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil. Solar Energy,196, 196–206. doi: 10.1016/j.solener.2019.12.002
  • [7] Dos Santos, S.A.A., Torres, J.P.N., Fernandes, C.A., & Lameirinhas, R.A.M. (2021). The impact of aging of solar cells on the performance of photovoltaic panels. Energy Conversion and Management: X, 10, 100082. doi: 10.1016/j.ecmx.2021.100082
  • [8] Dunlop, E.D., & Halton, D. (2006). The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in photovoltaics: Research and Applications, 14(1), 53–64. doi: 10.1002/pip.658
  • [9] Gyamfi, S., Aboagye, B., Peprah, F., & Obeng, M. (2023). Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions. Energy Conversion and Management: X, 20, 100403. doi: 10.1016/j.ecmx.2023.100403
  • [10] Herrmann, W., Bogdanski, N., Reil, F., Köhl, M., Weiss, K.A., Assmus, M., & Heck, M. (2010). PV module degradation caused by thermomechanical stress: real impacts of outdoor weathering versus accelerated testing in the laboratory. In Reliability of Photovoltaic Cells, Modules, Components, and Systems III, Vol. 7773 (pp. 145–153). SPIE. doi: 10.1117/12.862616
  • [11] Huang, C., & Wang, L. (2018). Simulation study on the degradation process of photovoltaic modules. Energy conversion and management, 165, 236-243. DOI: 10.1016/j.enconman.2018.03.087
  • [12] Ibne Mahmood, F., & Tamizh Mani, G. (2023). Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules. Solar Energy, 252, 20-28. doi: 10.1016/j.solener.2023.01.048
  • [13] Ishii, T., & Masuda, A. (2017). Annual degradation rates of recent crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25(12), 953–967. doi:10.1002/pip.2914
  • [14] Jordan, D.C., & Kurtz, S.R. (2013). Photovoltaic degradation rates—an analytical review. Progress in photovoltaics: Research and Applications, 21(1), 12–29. doi: 10.1002/pip.1182
  • [15] Karahüseyin, T., & Abbasoğlu, S. (2022). Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus. Sustainability, 14(15), 9084. doi: 10.3390/su14159084
  • [16] Kim, J., Rabelo, M., Padi, S.P., Yousuf, H., Cho, E.C., & Yi, J. (2021). A review of the degradation of photovoltaic modules for life expectancy. Energies, 14(14), 4278. doi: 10.3390/en14144278
  • [17] Hussain, M.T., & Mahdi, E.J. (2018). Assessment of Solar Photovoltaic Potential in Iraq. Journal of Physics: Conference Series, 1032, 012007. The Sixth Scientific Conference "Renewable Energy and its Applications" 21–22 February, Karbala, Iraq. doi:10.1088/1742-6596/1032/1/012007
  • [18] Koch, S., Weber, T., Sobottka, C., Fladung, A., Clemens, P., & Berghold, J. (2016). Outdoor electroluminescence imaging of crystalline photovoltaic modules: Comparative study between manual ground-level inspections and drone-based aerial surveys. In 32nd European Photovoltaic Solar Energy Conference and Exhibition (pp. 1736–1740), 20-24 June, Munich, Germany. doi:10.4229/EUPVSEC20162016-5BV.4.33
  • [19] Koester, L., Lindig, S., Louwen, A., Astigarraga, A., Manzolini, G., & Moser, D. (2022). Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment. Renewable and Sustainable Energy Reviews,165, 112616.doi: 10.1016/j.rser.2022.112616
  • [20] Lillo-Sánchez, L., López-Lara, G., Vera-Medina, J., Pérez-Aparicio, E., & Lillo-Bravo, I. (2021). Degradation analysis of photovoltaic modules after operating for 22 years. A case study with comparisons. Solar Energy, 222, 84-94. doi: 10.1016/j.solener.2021.04.024
  • [21] Luceño-Sánchez, J.A., Díez-Pascual, A.M., & Peña Capilla, R. (2019). Materials for photovoltaics: State of art and recent developments. International Journal of Molecular Sciences, 20(4),976. doi: 10.3390/ijms20040976
  • [22] Luo, W., Clement, C.E., Khoo, Y.S., Wang, Y., Khaing, A.M., Reindl, T., & Pravettoni, M. (2021). Photovoltaic module failures after 10 years of operation in the tropics. Renewable Energy, 177,327–335. doi: 10.1016/j.renene.2021.05.097
  • [23] Luo, W., Khoo, Y.S., Hacke, P., Naumann, V., Lausch, D., Harvey, S.P., & Ramakrishna, S. (2017). Potential-induced degradation in photovoltaic modules: a critical review. Energy and Environmental Science, 10(1), 43–68. doi: 10.1039/C6EE03375C
  • [24] Ndiaye, A., Charki, A., Kobi, A., Kébé, C.M., Ndiaye, P.A., & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140–151. doi:10.1016/j.solener.2013.07.005
  • [25] Piliougine, M., Oukaja, A., Sánchez‐Friera, P., Petrone, G., Sánchez‐Pacheco, F. J., Spagnuolo, G., & Sidrach‐de‐Cardona, M. (2021). Analysis of the degradation of single‐crystalline silicon modules after 21 years of operation. Progress in Photovoltaics: Research and Applications, 29(8), 907–919. doi: 10.1002/pip.3392
  • [26] Raghuraman, B., Lakshman, V., Kuitche, J., Shisler, W., TamizhMani, G., & Kapoor, H. (2006). An overview of SMUD's outdoor photovoltaic test program at Arizona State University. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Vol. 2 (pp. 2214–2216). 7–12 May, Waikoloa, USA. doi: 10.1109/WCPEC.2006.279497
  • [27] Reis, A.M., Coleman, N.T., Marshall, M.W., Lehman, P.A., & Chamberlin, C.E. (2002). Comparison of PV module performance before and after 11-years of field exposure. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference (pp. 1432–1435). 20-24 May, New Orleans, USA. doi:10.1109/PVSC.2002.1190878
  • [28] Sander, M., Dietrich, S., Pander, M., Ebert, M., & Bagdahn, J. (2013). Systematic investigation of cracks in encapsulated solar cells after mechanical loading. Solar Energy Materials and Solar Cells, 111, 82–89. doi: 10.1016/j.solmat.2012.12.033
  • [29] Santhakumari, M., & Sagar, N. (2019). A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renewable and Sustainable Energy Reviews, 110, 83–100. doi: 10.1016/j.rser.2019.04.064
  • [30] Tsanakas, J.A., Ha, L., & Buerhop, C. (2016). Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges, Renewable and Sustainable Energy Reviews, 62, 695–709. doi: 10.1016/j.rser.2016.05.002
  • [31] Virtuani, A., Caccivio, M., Annigoni, E., Friesen, G., Chianese, D., Ballif, C., & Sample, T. (2019). 35 years of photovoltaics: Analysis of the TISO‐10‐kW solar plant, lessons learnt in safety and performance—Part 1. Progress in Photovoltaics: Research and Applications, 27(4), 328–339. doi: 10.1002/pip.3098
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e3ddc0f-1d69-43cf-a449-4033e077fcb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.