Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study provides a proof that the limit of a distance-based inconsistency reduction process is a matrix induced by the vector of geometric means of rows when a distance-based inconsistent pairwise comparisons matrix is transformed into a consistent PC matrix by stepwise inconsistency reduction in triads. The distance-based inconsistency indicator was defined by Koczkodaj (1993) for pairwise comparisons. Its convergence was analyzed in 1996 (regretfully, with an incomplete proof) and finally completed in 2010. However, there was no interpretation provided for the limit of convergence despite its considerable importance. This study also demonstrates that the vector of geometric means and the right principal eigenvector are linearly independent for the pairwise comparisons matrix size greater than three, although both vectors are identical (when normalized) for a consistent PC matrix of any size.
Rocznik
Tom
Strony
721--729
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Department of Mathematics and Computer Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
autor
- Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Aczel, J. (1948). On means values, Bulletin of the American Mathematical Society 18(4): 443–454, DOI: 10.2478/v10006-008-0039-2.
- [2] Aczel, J. and Saaty, T. (1983). Procedures for synthesizing ratio judgements, Journal of Mathematical Psychology 27(1): 93–102.
- [3] Arrow, K. (1950). A difficulty in the concept of social welfare, Journal of Political Economy 58(4): 328–346.
- [4] Bauschke, H. and Borwein, J. (1996). Projection algorithms for solving convex feasibility problems, SIAM Review 38(3): 367–426.
- [5] Dong, Y., Xu, Y., Li, H. and Dai, M. (2008). A comparative study of the numerical scales and the prioritization methods in AHP, European Journal of Operational Research 186(1): 229–242.
- [6] Faliszewski, P., Hemaspaandra, E. and Hemaspaandra, L. (2010). Using complexity to protect elections, Communications of the ACM 53(11): 74–82.
- [7] Holsztynski, W. and Koczkodaj, W. (1996). Convergence of inconsistency algorithms for the pairwise comparisons, Information Processing Letters 59(4): 197–202.
- [8] Jensen, R. (1984). An alternative scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 28(3): 317–332.
- [9] Kendall, M. and Smith, B. (1940). On the method of paired comparisons, Biometrika 31: 324–345.
- [10] Koczkodaj, W. (1993). A new definition of consistency of pairwise comparisons, Mathematical and Computer Modelling 18(7): 79–84.
- [11] Koczkodaj, W., Kosiek, M., Szybowski, J. and Xu, D. (2015). Fast convergence of distance-based inconsistency in pairwise comparisons, Fundamenta Informaticae 137(3): 355–367.
- [12] Koczkodaj, W. and Szarek, S. (2010). On distance-based inconsistency reduction algorithms for pairwise comparisons, Logic Journal of the IGPL 18(6): 859–869.
- [13] Koczkodaj, W. and Szybowski, J. (2015). Pairwise comparisons simplified, Applied Mathematics and Computation 253: 387–394.
- [14] Llull, R. (1299). Ars Electionis (On the Method of Elections), Manuscript.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e3c4340-cbdb-45f5-8c97-f42ce4fcbf7b