Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Industrie 4.0 has been becoming one of the most challenging topic areas in industrial production engineering within the last decade. The increasing and comprehensive digitization of industrial production processes allows the introduction of innovative data-driven business models using cyber-physical systems (CPS) and Internet of Things (IoT). Efficient and flexible manufacturing of goods assumes that all involved production systems are capable of fulfilling all necessary machining operations in the desired quality. To ensure this, production systems must be able to communicate and interact with machines and humans in a distributed environment, to monitor the wear condition of functionally relevant components, and to self-adapt their behaviour to a given situation. This article gives an overview about the historical development of intelligent production systems in the context of value-adding business models. The focus is on condition monitoring and predictive maintenance in an availability oriented business model. Technical as well as organizational prerequisites for an implementation in the production industry are critically analysed and discussed on the basis of best practice examples. The paper concludes with a summary and an outlook on future research topics that should be addressed.
Czasopismo
Rocznik
Tom
Strony
5--24
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Fraunhofer Institute for Production Systems and Design Technology (IPK), Germany
- Technische Universität Berlin – Institute for Machine Tools and Factory Management (IWF), Germany
autor
- Fraunhofer Institute for Production Systems and Design Technology (IPK), Germany
autor
- Fraunhofer Institute for Production Systems and Design Technology (IPK), Germany
Bibliografia
- [1] LEGG S., HUTTER M., 2007, Universal Intelligence: A Definition of Machine Intelligence, Minds & Machines, 17, Springer Science+Business Media B.V., 391-444.
- [2] BROY M., 2010, Cyber-Physical Systems – Wissenschaftliche Herausforderungen bei der Entwicklung, Broy M. (ed.), Cyber-Physical Systems – Innovation durch Software-intensive eingebettete Systeme, Springer, 17-31.
- [3] KAGERMANN H., LUKAS W.-D., WAHLSTER W., 2011, Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, VDI Nachrichten, 13, 2.
- [4] MONOSTORI L., KÁDÁR B., BAUERNHANSL T., KONDOH S., KUMARA S., REINHART G., et al., 2016, Cyber-physical systems in manufacturing, CIRP Annals - Manufacturing Technology, 65, 621-641.
- [5] KOLBERG D., ZÜHLKE D., 2015, Lean Automation enabled by Industry 4.0 Technologies, IFACPapersOnLine, 48/3, Elsevier, 1870-1875.
- [6] BAUER W., SCHLUND S., MARRENBACH D., GANSCHAR O., 2014, Industrie 4.0 – Volkswirtschaftliches Potenzial für Deutschland, Study commissioned by the German Association for Information Technology, Telecommunications and New Media (BITKOM).
- [7] SPUR G., KRÜGER J., SUWALSKI I., STRAUBINGER W., HEINRICH A., 1993, CNC-integrierte Werkzeugüberwachung (CNC integrated tool monitoring), ZwF 88, 9, Carl Hanser, München, 389-391.
- [8] SPUR G., KRÜGER J., SUWALSKI I., 1995, Steuerungsintegration von Überwachungsverfahren (Integration of monitoring procedures into the CNC), ZWF 90, 5, Carl Hanser, München, 237-240.
- [9] BYRNE G., DORNFELD D., INASAKI I., KETTELER G., KONIG W., TETI R., 1995, Tool Condition Monitoring (TCM) – The Status of Research and Industrial Application, CIRP Annals – Manufacturing Technology, 44/2, 541-567.
- [10] MONOSTORI L., PROHASZKA J., 1993, A Step towards Intelligent Manufacturing: Modelling and Monitoring of Manufacturing Processes through Artificial Neural Networks, CIRP Annals - Manufacturing Technology, 42/1, 485-488.
- [11] MONOSTORI L., MÁRKUS A., VAN BRUSSEL H., WESTKÄMPFER E., 1993, Machine Learning Approaches to Manufacturing, CIRP Annals - Manufacturing Technology, 45/2, 675-712.
- [12] KRÜGER J., NEUBERT A., 1996, Maschinendiagnose über das Internet (Machine diagnosis via Internet), ZWF 91, Carl Hanser Verlag, München, 604-606.
- [13] DJURDJANOVIC D., LEE J., NI J., 2003, Watchdog Agent – an infotronics-based prognostics approach for product performance degradation assessment and prediction, Advanced Engineering Informatics, 17, Elsevier Ltd., 109-125.
- [14] HOHWIELER E., GEISERT C., 2004, Intelligent Machines Offer Condition Monitoring and Maintenance Prediction Services, Roberto Teti (ed.), Proceedings of the 4th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP ICME ’04), 30 June to 2 July 2004, Sorrento, Italy, 599-604.
- [15] MEIER H., 2004, Embedded Online Service: Internetbasierte Dienstleistungsplattform für Produktionsbetriebe, VDMA.
- [16] KREIDLER V., 2004, Internet-basierte Produktions-Dienstleistungen für Werkzeugmaschinen, Doctoral thesis TU Braunschweig.
- [17] N. N., 2014, SINUMERIK Integrate for production – Future-proof IT solutions for machine tools, URL: https://www.industry.siemens.com/verticals/global/en/automotive-manufacturing/Documents/PDF/AE_Sinumerik-Integrate-for-production.pdf
- [18] MEIER H., RAJKUMAR R., SELIGER G., 2010, Industrial Product-Service Systems – IPS², CIRP Annals – Manufacturing Technology, 59/2, Elsevier, 607-627.
- [19] MEIER H., VÖLKER O., FUNKE B., 2011, Industrial Product-Service Systems (IPS²) – Paradigm shift by mutually determined products and services, Int J Adv Manuf Technol., 52, 1175-1191.
- [20] UHLMANN E., GABRIEL C., LAGHMOUCHI A., GEISERT C., RAUE N., 2017, Holistic Approach for Condition Monitoring in Industrial Product-Service Systems, Advances in Through-life Engineering Services (Decision Engineering), Springer, 1st ed. 2017 edition (available from 13 July 2017).
- [21] UHLMANN E., GEISERT C., RAUE N., GABRIEL C., 2016, Situation Adapted Field Service Support Using Business Process Models and ICT Based Human-Machine-Interaction, Procedia CIRP, 8th CIRP IPSS CONFERENCE – Product-Service Systems across Life Cycle, 20-21 June 2016, Bergamo (Italy), 240-245.
- [22] UHLMANN E., OTTO F., GEISERT C., 2013, Improving Maintenance Services for Machine Tools by Integrating Specific Software Functions, Shimomura, Y.; Kimita, K. (eds.): The Philosopher’s Stone for Sustainability, Proceedings of the 4th CIRP International Conference on Industrial Product-Service Systems, Tokyo, Japan, 8-9 November 2012, Springer Berlin Heidelberg, 459-464.
- [23] MEIER H., UHLMANN E., KRUG C.M., VÖLKER O., GEISERT C., STELZER C., 2009, Dynamic IPS²-Networks and -Operations Based on Software Agents, Proceedings of the 1st CIRP IPS² Conference, 1-2 April 2009, Cranfield, UK, Cranfield University Press, 305-310.
- [24] WINDISCHHÖFER R., LEPISTÖ M., 2016, Integrated Operations: ABB‘s digital business transformation for the maritime industry, Whitepaper provided by ABB, URL: https://library.e.abb.com/public/07dca292ebdc40388cb857259919ad3a/LM%203AJM005000%20-%200059%202016%20-%20Integrated%20operationsDigital%20business%20transformation%20for%20the%20maritime%20industry_270616_FINAL%20Lowres.pdf, accessed on 17-02-27.
- [25] GALER S., 2016, Coffee Machines Brew Industry Disruption: Digital Twins Emerge in 2017, URL: http://news.sap.com/coffee-machines-brew-industry-disruption-digital-twins-emerge-in-2017/, accessed on 17-02-27.
- [26] N. N., 2015, Digitalization in machine building – The digital twin, URL: https://www.siemens.com/customermagazine/en/home/industry/digitalization-in-machine-building/the-digital-twin.html.
- [27] GRIEVES M., VICKERS J., 2017, Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems, Kahlen F.-J., Flumerfelt S., Alves A., Transdisciplinary Perspectives on Complex Systems, Springer International Publishing, 85-113.
- [28] UHLMANN E., GEISERT C., HOHWIELER E., 2008, Monitoring of slowly progressing deterioration of computer numerical control machine axes, Proceedings of the I MECH E Part B Journal of Engineering Manufacture. 222/10, 1213-1219.
- [29] OERTWIG N., GERING P., 2016, The Industry Cockpit Approach: A Framework for Flexible Real-Time Production Monitoring, Mertins K., Jardim-Gonçalves R., Popplewell K., Mendonça J. (eds.) Enterprise Interoperability VII. Proceedings of the I-ESA Conferences, 8. Springer, Cham.
- [30] UHLMANN E., SCHALLOCK B., OTTO F., 2015, Intelligente Werkstattfertigung – Steuerung von Serienprodukten für die Werkstattfertigung mit Industrie 4.0-Lösungen (Intelligent job shop manufacturing – Control mechanisms for job shop manufacturing of series products using the German “Industrie 4.0” approach), wt-online 4-2015, 184-189.
- [31] VICK A., HORN C., RUDORFER M., KRÜGER J., 2015, Control of robots and machine tools with an extended factory cloud, 11th IEEE World Conference on Factory Communication Systems.
- [32] VICK A., VONASEK V., PENICKA R., KRÜGER J., 2015, Robot control as a service – Towards cloud-based motion planning and control for industrial robots, 10th IEEE International Workshop on Robot Motion and Control.
- [33] N. N., 2016, Machine monitoring with smart sensors, Press release of Robert Bosch GmbH, URL: http://www.bosch-presse.de/pressportal/de/en/machine-monitoring-with-smart-sensors-44917.html, accessed on 2017-02-26.
- [34] N. N., 2015, Monorail guidance systems 4.0 – Intelligent components for feed spindles, Schaeffler press release, URL: http://www.schaeffler.de/remotedocuments/en_2/_global/download_pdf_rtf/pdf/pressrelease_71207309.pdf, accessed on 2017-02-21.
- [35] N. N., Motors that let you know when it’s time for a service, http://new.abb.com/events/hannover-messe/smartsensor, accessed on 2017-02-21.
- [36] N. N., 2016, Smart materials turn seals into sensors or actuators that measure wear or forces, Article provided by Freudenberg Sealing Technologies GmbH & Co Kg in: Sealing Technology, 7, Elsevier, 1 and 16.
- [37] CAO H., ZHANG X., CHEN X., 2017, The concept and progress of intelligent spindles: A review, International Journal of Machine Tools & Manufacture, 112, Elsevier, 21-52.
- [38] UHLMANN E., LAGHMOUCHI A., HOHWIELER E., GEISERT C., 2015, Condition monitoring in the cloud, Procedia CIRP, 38, 53-57.
- [39] N. N., 2016, HARTING MICA – Unmatched Versatility – to digitally transform your Business, Company brochure provided by HARTING Technology Group, URL: http://www.harting-mica.com/fileadmin/harting/documents/lg/hartingtechnologygroup/landingpages/MICA/dokumentation/Flyer_HARTING_MICA_EN.pdf, accessed on 2017-02-21.
- [40] N. N., 2016, Cross-Domain Development Kit XDK110 Platform for Application Development, Company brochure provided by Bosch Connected Devices and Solutions GmbH, URL: https://xdk.boschconnectivity.com/documents/37728/55858/MQTT-Tutorial.pdf/5e8ea386-57f1-4992-82ea-4071679b0a45, accessed on 2017-02-21.
- [41] N. N., 2013, CIRP Working Group – Industrial Product-Service-Systems (IPS²), URL: http://www.lps.rub.de/schwerpunkt/cirp/dates, accessed on 2017-02-28.
- [42] SHI J., WAN J., YAN H., SUO H., 2011, A survey of cyber-physical systems, Proc. of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9-11 November 2011.
- [43] SIHN W., GRAUPNER T.-D., 2001, e-Industrial Services: Value-Added Services for the Producing Sector, Proceedings of the CIRP 34th International Seminar on Manufacturing Systems, 16-18 May, 2001, Athens, Greece, 413-424.
- [44] COX M., ELLSWORTH D., 1997, Application-Controlled Demand Paging for Out-of-Core Visualization, Proceedings of the 8th IEEE Visualization '97 Conference, 235-244.
- [45] N.N., 1996, Internet Solution Division Strategy for Cloud Computing, CST presentation, November 14, 1996, Compaq Computer Corporation, URL: http://www.technologyreview.com/sites/default/files/legacy/compaq_cst_1996_0.pdf, accessed on 2017-03-01.
- [46] WEISER M., 1991, The Computer for the 21st Century, Scientific American, 265/3, 94-104.
- [47] HARRINGTON J., 1973, Computer integrated manufacturing, New York, Industrial Press.
- [48] SAMUEL A.L., 1959, Some Studies in Machine Learning Using the Game of Checkers, IBM Journal, 3, 211-229.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e39519b-a4fa-4803-a1ea-9dd601ad1ccf