Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Zircons are not forever. O-U-Pb isotopic studies of the zircons from alkaline rocks
Języki publikacji
Abstrakty
Despite the common belief that zircons are nearly indestructible i.e. zircons last forever, regardless of the geological evolution experienced by their host rocks, there is one hostile environment in which decomposition of this incredibly resistant mineral may occur. An alteration of the natural zircon by coupled dissolution-reprecipitation or by ion-exchange with an aqueous fluid are common for alkaline rocks. In those zircons, the abundance of non-formula elements increase and textural changes are frequently observed. These symptoms are accompanied by the disturbance of primarily isotopic signatures. The extent of these processes can be well inferred from the oxygen (δ18O) isotopic composition of zircon. A large contrast of the δ18O between values of the normal mantle/magmatic zircons (>5.3 ±0.6%o) and the results obtained from the porous zircons from the Elk syenite massif have been detected by SHRIMP IIe/MC analyses using a~20 fim Cs+ beam. Most of the grains had reduced δ 1SO, up to prominently negative δ18O values of-7.46 ±0.27%. These δ 18O-depleted signatures resulted from high-temperature alkaline fluids - zircon interaction after foid syenite emplacement. Then this would imply that porous textures, as illustrated in Fig. 1, could be induced by alkaline fluids and thus these grains could be used to date solely the post-emplacement, i.e. hydrothermal, stage of evolution.
Czasopismo
Rocznik
Tom
Strony
730--–734
Opis fizyczny
Bibliogr. 35 poz., fot.
Twórcy
autor
- Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, ul. Rakowiecka 4, 00-975 Warszawa
autor
- AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Geologii, Geofizyki i Ochrony Środowiska, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
- 1. ANDERSEN T., ERAMBERT M., LARSEN A.O., SELBEKK R.S., 2010 - Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J. Petrol., 51: 2303-2325.
- 2. BELOUSOVA E.A., GRIFFIN W.L., O’REILLY S.Y., FISHER N.I., 2002 - Igneous zircon: Trace element composition as an indicator of source rock type Contrib. Mineral. Petrol., 143: 602-622.
- 3. BHOWMIK S., WILDE S., BHANDARI A., SARBADHIKARI A.B. 2014 - Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: an Example from the Central Indian Tectonic Zone. J. Petrol., 55 (3): 585-621; doi: 10.1093/petrology/egt078
- 4. BORST A.M., WAIGHT T.E., FINCH A.A., STOREY M., ROUX PJ.LE. 2018 - Dating agpaitic rocks: Amulti-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland. Lithos, 324-325: 74-88; https://doi.org/10.1016/j.lithos.2018.10.037.
- 5. CAVOSIE A.J., VALLEY J.W., WILDE S.A., E.I.M.F. (Edinburgh Ion Microprobe Facility, School of Geosciences, University of Edinburgh, Edinburgh, UK)2005 - Magmatic S18O in 4400-3900 Ma detrital zircons: Arecord of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett., 235, 663-681; https://doi.org/10.1016/j.epsl.2005.04.028
- 6. COMPSTON W., PIDGEON R.T. 1986 - Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321: 766-769.
- 7. CHERNIAK D.J., WATSON E.B. 2003 - Diffusion in zircon. Rev. Mineral. Geochem., 53: 113-143; https://doi.org/10.1515/9781501509322-008
- 8. DEMAIFFE D., WISZNIEWSKA J., KRZEMIŃSKA E., WILLIAMS I.S., STEIN H., BRASSINNES S., OHNENSTETTER D., DELOULE E. 2013 - A hidden alkaline and carbonatite province of Early Carboniferous age in Northeast Poland: Zircon U-Pb and pyrrhotite Re-Os geochronology. J. Geol., 121: 91-104; https://doi: 10.1086/668674 DODSON M.H. 1973 - Closure temperature in geochronological and petrological systems. Contrib. Mineral. Petrol., 40: 259-274.
- 9. FU B., MERNAGH T.P., KITAN.T., KEMP A.I., VALLEY J.W. 2009 - Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chem. Geol., 259: 131-142.
- 10. GEISLER T., SCHALTEGGER U., TOMASCHEK F. 2007 - Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43-50.
- 11. GROULIER P.-A., TURLIN F., ANDRÉ-MAYER A-S., OHNENSTETTER D., CRÉPON A., BOULVAIS P., POUJOL M., ROLLION-BARD C., ZEH A., MOUKHSIL A., SOLGADIF., EL BASBAS A. 2020 - Silicate- carbonate liquid immiscibility: insights from the Crevier alkaline intrusion (Quebec). J. Petrol., 61, egaa033; https://doi.org/10.1093/petro- logy/egaa033
- 12. HARLOV D., ANCZKIEWICZ R., DUNKLEY D. 2023 - Metasomatic alteration of zircon at lower crustal P-T conditions utilizing alkali- and F-bearing fluids: Trace element incorporation, depletion, and resetting the zircon geochronometer. Geochim. Cosmochim. Acta, 352: 222-235; doi: 10.1016/j.gca.2023.05.011
- 13. HOSKIN P.W.O. 2005 - Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69: 637-648.
- 14. HOSKIN P.W.O., IRELAND T.R. 2000 - Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28: 627-630.
- 15. HOSKIN P.W.O., SCHALTEGGER U. 2003 - The composition of zircon and igneous and metamorphic petrogenesis. [W:] Hanchar J.M., Hoskin P.W.O. (red.), Zircon. Rev. Mineral. Geochem., 53: 27-62.
- 16. KIRKLAND C., SLAGSTAD T., JOHNSON T. 2018 - Zircon as a metamorphic timekeeper: A case study from the Caledonides of central Norway. Gondwana Res., 61: 63-72.
- 17. KRZEMIŃSKA E., KRZEMIŃSKI L. 2017 - Mapa geologiczna podłoża krystalicznego polskiej części platformy wschodnioeuropejskiej, 1 : 1 000 000. Państw. Inst. Geol., Warszawa.
- 18. LEE J.K.W., WILLIAMS I.S., ELLIS D.J.1997 - Pb, U and Th diffusion in natural zircon. Nature, 390: 159-161; doi: 10.1038/36554
- 19. LI CH., LI L., LI S.-R., SANTOSH M., SHEN J.-F. 2022 - Geochemistry of hydrothermal zircon as a proxy to fingerprint ore fluids in late Mesozoic decratonic gold deposits. Ore Geol. Rev., 143: 104703; https://doi.org/10.1016Zj.oregeorev.2022.104703
- 20. LIU Y., HOU Z., ZHANG R., WANG P., GAO J., RASCHKE M.B. 2019 - Zircon Alteration as a Proxy for Rare Earth Element Mineralization Processes in Carbonatite? Nordmarkite Complexes of the Mianning? Dechang Rare Earth Element Belt, China. Econ. Geol., 114: 719-744; doi: 10.5382/econgeo.4660
- 21. MARKS M.A.W., HETTMANN K., SCHILLING J., FROST B.R., MARKL G. 2011 - The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J. Petrol., 52: 439-455; doi: 10.1093/petrology/egq086
- 22. MARKS M., MARKL G. 2017 -A global review on agpaitic rocks. Earth Sci. Rev., 173: 229-258;https://doi.org/10.1016/j.earscirev.2017.06.002
- 23. PARK C., SONG Y., CHUNG D., KANG I.-M., KHULGANAKHUU C., YI K. 2016 - Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos, 260: 268-285.
- 24. QIAN H., TIAN M., ZHANG N. 2024 - Unveiling Geological Patterns: Bayesian Exploration of Zircon-Derived Time Series Data, EGU General Assembly 2024, Vienna, Austria, 14-19 Apr 2024, EGU24-5268; https://doi.org/10.5194/egusphere-egu24-5268
- 25. POPRAWA P., NEJBERT K., KRZYWIEC P., KRZEMIŃSKA E., KRZEMIŃSKI L., MAZUR S., SŁABY E. 2024 - Alkaline magmatism from the Lublin-Baltic area of Poland (SW slope of the East European Craton) - Manifestation of hitherto unrecognized early Carboniferous igneous province. Terra Nova, 36 (1): 77-88; doi:10.1111/ter.12681
- 26. SCHERER E.E., WHITEHOUSE M.J., MÜNKER C. 2007 - Zircon as a monitor of crustal growth. Elements, 3: 19-24.
- 27. SCHOENE B., BOWRING S. 2006 - U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol., 151: 615-630; 10.1007/s00410-006-0077-4
- 28. TAKEHARA M., HORIE K., HOKADA T., KIYOKAWA S. 2018 - New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth gabbro. Chem. Geol., 484: 168-178.
- 29. TURNER S., WILDE S., WÖRNERG., SCHAEFERB., LAI Y-J. 2020 - An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Communicat., 11: 1241; https://doi.org/10.1038/s41467-020-14857-1
- 30. VALLEY J.W. 2003 - Oxygen isotopes in zircon. Rev. Mineral. Geochem. Mineral. Soc. Am., 53: 343-385; https://doi.org/10.2113/053034
- 31. WALL F., ZAITSEV A.N. 2004 - Rare earth minerals in Kola carbonatites Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province. Mineral. Soc. Bull., 10 (140): 341-373; doi: 10.1180/MSS.10.10
- 32. WATSON E.B., CHERNIAK D.J. 1997 - Oxygen diffusion in zircon. Earth Planet. Sci. Lett., 148: 527-544.
- 33. WILDE S.A., VALLEY J.W., PECK W.H., GRAHAM C.M. 2001 - Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409: 175-178.
- 34. WISZNIEWSKA J., PETECKI Z., KRZEMIŃSKA E., GRABARCZYK A., DEMAIFFE D. 2020 - The Tajno ultra mafic-alkaline-carbonatite massif, NE Poland: a review. Geophysics, petrology, geochronology and isotopic signature. Geol. Quart., 64 (2): 402-421; http://dx.doi.org/10.7306/gq.1535
- 35. ZOU X., QIN K., HAN X., LI G., EVANS N.J., LI Z., YANG W. 2019 - Insight into zircon REE oxy-barometers: A lattice strain model perspective, Earth Planet. Sci. Lett., 506: 87-96; https://doi.org/10.1016/j.epsl.2018.10.031
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e34816f-8d2a-4b87-bb49-e72fc58aa18a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.