PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of the operating voltage of a multilayer uniaxial dielectric elastomer generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimum operating parameters for dielectric elastomer generator (DEG) systems, in the sense of the global optimum, refer to their maximum performance in terms of elastomer tensile strength, breakdown voltage value etc. In practice, operating a DEG close to the limit of its strength will involve a limitation of its durability, as DEGs can also suffer fatigue damage. Deviation from the optimum operating parameters, either for reasons of increasing their durability and reliability or simply because of practical limitations in a given application, makes it necessary to search for local optimum operating points. The aim of this study was to analytically determine the optimum working point of a DEG generator operating in a rectangular cycle (constant charge, constant voltage) by the value of the voltage difference between the upper and lower sources. On the basis of capacitance measurements on two generators with two and three active layers (electrodes) operating under uniaxial tensile loading, the theoretical values of the optimal voltage difference ΔU were calculated. The results were then verified experimentally. The empirical values were found to be in agreement with the theory (Fig. 10) and showed that it is possible to predict the performance of a DEG accurately by knowing the variations in its electrical capacitance.
Twórcy
  • Department of Machine Design and Maintenance, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Machine Design and Maintenance, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Ambrożkiewicz B., Czyż Z., Stączek P., Tiseira A., García-Tíscar J. Performance analysis of a piezoelectric energy harvesting system. Advances in Science and Technology – Research Journal. 2022 Nov 29;16(6):179–85. https://doi.org/10.12913/22998624/156215.
  • 2. Kecik K. Experimental energy recovery from a backpack using various harvester concepts. Advances in Science and Technology – Research Journal. 2024 Apr 20;18(3):67–78. https://doi.org/10.12913/22998624/185848.
  • 3. Grzybek D. Control system for multi-input and simple-output piezoelectric beam actuator based on macro fiber composite. Energies. 2022 Mar 10;15(6):2042. https://doi.org/10.3390/en15062042.
  • 4. Vu-Cong T, Jean-Mistral C, Sylvestre A. Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers. Smart Materials and Structures. 2012 Sep 7;21(10):105036. https://doi.org/10.1088/0964-1726/21/10/105036.
  • 5. Hisada Y., Kurimoto M., Mitsumoto S., Suzuoki Y. High-precision Estimation of Dielectric Elastomer Generator Output Considering Leakage Charge. 2022 IEEE 4th International Conference on Dielectrics (ICD). 2022 Jul 3;244–7. https://10.1109/ICD53806.2022.9863507.
  • 6. Hoffstadt T, Graf C, Maas J. Optimization of the energy harvesting control for dielectric elastomer generators. Smart Materials and Structures. 2013 Aug 27;22(9):094028. https://doi.org/10.1088/0964-1726/22/9/094028.
  • 7. Shian S, Huang J, Zhu S, Clarke DR. Optimizing the electrical energy conversion cycle of dielectric elastomer generators. Advanced Materials [Internet]. 2014. https://doi.org/10.1002/adma.201402291.
  • 8. Fan P, Chen H. Optimizing the energy harvesting cycle of a dissipative dielectric elastomer generator for performance improvement. Polymers. 2018 Dec 4;10(12):1341.
  • 9. Jiang Y, Liu S, Zhong M, Zhang L, Ning N, Tian M. Optimizing energy harvesting performance of cone dielectric elastomer generator based on VHB elastomer. Nano Energy. 2020 May;71:104606. https://doi.org/10.1016/j.nanoen.2020.104606.
  • 10. Di K, Bao K, Chen H, Xie X, Tan J, Shao Y, et al. Dielectric elastomer generator for electromechanical energy conversion: A mini review. Sustainability. 2021 Sep 2;13(17):9881. https://doi.org/10.3390/su13179881.
  • 11. Skov AL, Yu L. Optimization techniques for improving the performance of silicone-based dielectric elastomers. Advanced Engineering Materials. 2017 Nov 27;20(5):1700762. https://doi.org/10.1002/adem.201700762.
  • 12. Yao J, Zang W, Wang Y, Yu B, Jiang Y, Ning N, et al. Largely enhanced service life and energy harvesting stability of dielectric elastomer generator by designing and optimizing compliance of electrodes. ACS Applied Materials & Interfaces. 2024 Feb 21;16(9):11595–604. https://doi.org/10.1021/acsami.3c19158.
  • 13. Srivastava AK, Basu S. Exploring the performance of a dielectric elastomer generator through numerical simulations. Sensors and Actuators A: Physical. 2021 Mar;319:112401. https://doi.org/10.1016/j.sna.2020.112401.
  • 14. Zhang Y, Ellingford C, Zhang R, Roscow J, Hopkins M, Keogh P, et al. Electrical and mechanical self‐healing in high‐performance dielectric elastomer actuator materials. Advanced Functional Materials. 2019 Feb 21;29(15):1808431. https://doi.org/10.1002/adfm.201808431.
  • 15. Xu Z, Zepeng Lv, Zhang C, Wu K, Morshuis P, Claverie A. Study on Breakdown of Dielectric Elastomer Generators during Energy Harvesting Process. 2022 IEEE 4th International Conference on Dielectrics (ICD). 2024 Jun 30;1–4. https://doi.org/10.1109/ICD59037.2024.10613228.
  • 16. Taine E, Andritsch T, Saeedi IA, Peter. Optimizing energy density in dielectric elastomer generators: a reliability-dependent metric. Smart Materials and Structures. 2024 Oct 7; https://dx.doi.org/10.1088/1361-665X/ad840e.
  • 17. Chiba S, Waki M. Innovative power generator using dielectric elastomers (creating the foundations of an environmentally sustainable society). Sustainable Chemistry and Pharmacy [Internet]. 2020 Mar 1 [cited 2020 Apr 22];15:100205. https://doi.org/10.1016/j.scp.2019.100205.
  • 18. Du X, Du L, Li P, Liu X, Han Y, Yu H, et al. A dielectric elastomer and electret hybrid ocean wave power generator with oscillating water column. Nano Energy [Internet]. 2023 Jun 15;111:108417. https://doi.org/10.1016/j.nanoen.2023.108417.
  • 19. Chiba S, Waki M. A marine experiment using dielectric elastomer generators and comparative study with actual measured values and theoretical values. Archives of Advanced Engineering Science. 2024 Aug 5; https://doi.org/10.47852/bonviewAAES42023530.
  • 20. Sikora W. Experimental investigation of a uniaxial dielectric elastomer generator. Acta Mechanica et Automatica. 2023 Aug 17;17(4):499–506. https://doi.org/10.2478/ama-2023-0058.
  • 21. Huang J, Shian S, Suo Z, Clarke DR. Dielectric elastomer generator with equi-biaxial mechanical loading for energy harvesting. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE. 2013 Apr 9;8687:86870Q86870Q. https://doi.org/10.1117/12.2009724.
  • 22. Moretti G, Rosset S, Vertechy R, Anderson I, Fontana M. A review of dielectric elastomer generator systems. Advanced Intelligent Systems. 2020 Aug 23;2(10):2000125. https://doi.org/10.1002/aisy.202000125.
  • 23. Rosset S, Anderson IA. Squeezing more juice out of dielectric elastomer generators. Frontiers in Robotics and AI. 2022 Feb 11;9. https://doi.org/10.3389/frobt.2022.825148.
  • 24. Górski F, Denysenko Y, Kuczko W, Żukowska M, Wichniarek R, Zawadzki P, Rybarczyk J. Individualized 3D printed orthopaedic and prosthetic devices using AutoMedPrint technology – Methodologies and Examples. Advances in Science and Technology – Research Journal. 2024 Sept 8;18(6):145–158. https://doi.org/10.12913/22998624/191548.
  • 25. Rybarczyk J, Górski F, Kuczko W, Wichniarek R, Siwiec S, Vitkovic N, Păcurar R. Mechanical properties of carbon fiber reinforced materials for 3D printing of ankle foot orthoses. Advances in Science and Technology – Research Journal. 2024 Jun 20;18(4):191–215. https://doi.org/10.12913/22998624/188819.
  • 26. Komorek A, Bakuła M, Bąbel R, Woziński P, Rośkowicz M. The influence of 3D printing direction on the mechanical properties of manufactured elements. Advances in Science and Technology – Research Journal. 2024 Nov 1;18(8):86–95. https://doi.org/10.12913/22998624/193528.
  • 27. Sikora W. Estimating the capacitance of a dielectric elastomer generator using selected measurement methods. 2024 May 22; https://doi.org/10.1109/ICCC62069.2024.10569981.
  • 28. McKay TG, Rosset S, Anderson IA, Shea H. Dielectric elastomer generators that stack up. Smart Materials and Structures. 2014 Dec 5;24(1):015014. https://dx.doi.org/10.1088/0964-1726/24/1/015014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e33b241-63d3-4b15-898a-2df1c1f73af9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.