PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Secondary arsenic minerals from the Złoty Stok As-Au abandoned mine (SW Poland)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Secondary arsenic minerals (SAM) formed recently in abandoned adits of the former Au-As mine at Złoty Stok (SW Poland) constitute two assemblages. The first consists of two types of scorodite, pitticite, kaňkite, hörnesite, picropharmacolite and minor amounts of jarosite and gypsum. Formation of the Fe arsenates took place under acidic conditions (pH ~3-4) as a result of löllingite, arsenopyrite and pyrite oxidation. Hörnesite and picropharmacolite crystallized as products of interactions between acidic arsenic-rich pore solutions with Mg-Ca carbonates from rocks that surround the ore mineralisation. The interaction of carbonates with acid pore solutions caused a rapid increase in pH that reached neutral or weakly alkaline values. The chemical compositions of hörnesite and picropharmacolite correspond well to their ideal compositions: (Mg3.17Ca0.07)Ʃ3.24(AsO4)1.90 8H2O and Ca4.31Mg0.92(HasO4)1.91[(AsO4)1.99(SO4)0.01]Ʃ2.00 11H2O, respectively. The second assemblage of SAM comprises exclusively the Mg-enriched erythrite [(Co1.66Mg1.03Ni0.28Ca0.05Zn0.02)Σ3.03(AsO4)1.99× 8H2O)] – annabergite [(Ni1.48Mg0.94Co0.66Ca0.12Fe0.01Zn0.01)S3.20AsO4)1.92× 8H2O] series. These minerals crystallized from slightly acidic (pH ~5–6) to neutral media. Dissolution of SAM and other secondary phases (e.g., schwertmannite) causes the release of arsenate and sulphate ions into mine waters. These ions can be reduced under anaerobic conditions by different strains of bacteria. The product of this proces is orpiment.
Rocznik
Strony
925--940
Opis fizyczny
Bibliogr. 73 poz., fot., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Institute of Geochemistry, Mineralogy and Petrology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
  • University of Warsaw, Institute of Geochemistry, Mineralogy and Petrology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Battaglia-Brunet, F., Crouzet, C., Burnol, A., Coulon, S., Morin, D., Joulian, C., 2012. Precipitation of arsenic from acidic water in a fixed-film bioreactor. Water Research, 46: 3923-3933.
  • 2. Bluteau, M.C., Demopoulos, G.P., 2007. The incongruent dissolution of scorodite - solubility, kinetics and mechanism. Hydrometallurgy, 87: 163-177.
  • 3. Budzyńska, H., 1971. Mineralogy of Złoty Stok arsenic deposit (Polish with English summary). Archiwum Mineralogiczne, 29: 30-74.
  • 4. Chukhlantsev, V.G., 1956. The solubility products of a number of arsenates (in Russian). Journal of Analytical Chemistry, 11: 529-535.
  • 5. Cłapała, T., Narożna, D., Siuda, R., Borkowski, A., Selwet, M., Mądrzak, C.J., Koźlecka, E., 2016. Bacterial Communities from the arsenic mine in Złoty Stok, Sudety Mountains, Poland. Polish Journal of Microbiology, 66: 375-381.
  • 6. Cwojdziński, S., 1974. Szczegółowa Mapa Geologiczna Sudetów w skali 1:25 000, arkusz Złoty Stok (in Polish). Wyd. Geol., Warszawa.
  • 7. Cymerman, Z., 1996. The Złoty Stok-Trzebieszowice regional shear zone: the boundary of terranes in the Góry Złote Mts. (Sudetes). Geological Quarterly, 40 (1): 89-118.
  • 8. Devasia, P., Natarajan, K., 2010. Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces. International Journal of Mineral Processing, 94: 135-139.
  • 9. Drahota, P., Filippi, M., 2009. Secondary arsenic minerals in the environment: a review. Environment International, 35: 1243-1255.
  • 10. Drewniak, L., Matlakowska, R., Rewerski, B., Sklodowska, A., 2010. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy, 104: 437-442.
  • 11. Drewniak, L., Maryan, N., Lewandowski, W., Kacyanowski, S., Sklodowska, A., 2012. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environmental Pollution, 162: 190-201.
  • 12. Dumańska-Słowik, M., Pieczka, A., Natkaniec-Nowak, L., Kunecki, P., Gaweł, A., Heflik, W., Smoliński, W., Kozub-Budzyń, G., 2018. Mg-enriched erythrite from Bou Azzer, Anti-Atlas Mountains, Marocco: geochemical and spectroscopic characteristics. Mineralogy and Petrology, 112: 381-392.
  • 13. Dziekoński, T., 1972. Exploitation and ore metallurgy in the Lower Silesia from XIII to XXc (in Polish with English summary). Polska Akademia Nauk. Instytut Historii Kultury Materialnej. 4. Ossolineum. Wrocław.
  • 14. Foster, A.L., Brown, Jr., G.E., Tingle, T.N., Parks, G.A., Voigt, D.E., Brantley, S.L., 1997. XAFS determination of As speciation in weathered mine tailings and contaminated soil from California, USA. Journal de Physique IV (Proceedings), 7: 815-816.
  • 15. Frost, L.R., Marten,s, W., Williams, P.A., Kloprogge, T.J., 2003. Raman spectroscopic study of the vivianite arsenate minerals. Journal of Raman Spectroscopy, 34: 751-759.
  • 16. Gas'kova, O.L., Shironosova, G.P., Bortnikova, S.B., 2008. Thermodynamic estimation and stability field of bukovskýite, an iron sulfoarsenate. Geochemistry International, 46: 85-91.
  • 17. Gil, G., Barnes, J.D., Boschi, C., Gunia, P., Raczyński, P., Szakmány, G., Bendő, Z., Péterdi, B., 2015. Nephrite from Złoty Stok (Sudetes, SW Poland): petrological, geochemical, and isotopic evidence for a dolomite-related origin. Canadian Mineralogist, 53: 533-556.
  • 18. Haffert, L., Crow, D., 2008. Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Applied Geochemistry, 23: 1467-1483.
  • 19. Haffert, L., Crow, D., Pope, J., 2010. Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 53: 91-101.
  • 20. Holmes, P.R., Crundwell, F.K., 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochimica et Cosmochimica Acta, 64: 263-274.
  • 21. Jones, R.A., Koval, S.F., Nesbitt, H.W., 2003. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 67: 955-965.
  • 22. Juillot, F., Ildefonse, Ph., Morin, G., Calas, G., Kersabiec, A.M., Benedetti, M., 1999. Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Applied Geochemistry, 14: 1031-1048.
  • 23. Kato, A., Matsubara, S., Nagashima, K., Nakai, I., Shimizu, M., 1984. Kaňkite from the Suzukura mine, Enzan city, Yamanashi Prefecture, Japan. Mineralogical Journal, 12: 6-14.
  • 24. Kocourková, E., Cempírek, J., Losos, Z., 2011a. Kaňkit z Dlouhé Vsi u Havlíčkova Brodu (in Czech). Acta rerum naturalium, 4: 7-12.
  • 25. Kocourková, E., Sracek, O., Houzar, S., Cempírek, J., Losos, Z., Filip, J., Hršelová, P., 2011b. Geochemical and mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. Journal of Geochemical Exploration, 110: 61-73.
  • 26. Kowalski, W., 1969. Ore minerals from Złoty Stok (Lower Silesia) (in Polish with English summary). Prace Mineralogiczne, 16: 23-40.
  • 27. Krause, E., Ettel, V.A., 1989. Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy, 22: 311-337.
  • 28. Kubisz, J., 1964. Studium minerałów grupy ałunitu - jarosytu. Prace Geologiczne Komitetu Nauk Geologicznych, Polska Akademia Nauk, Oddział w Krakowie, 22: 1-96.
  • 29. Langmuir, D., Mahoney, J., MacDonald, A., Rowson, J., 1999. Predicting arsenic concentrations in the porewaters of buried uranium mill tailing. Geochimica et Cosmochimica Acta, 63: 3379-3394.
  • 30. Langmuir, D., Mahoney, J., Rowson, J., 2006. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4 2H2O) and their applicaiion to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70: 2942-2956.
  • 31. Ledbetter, R.N., Connon, S.A., Neal, A.L., Dohnalkova, A., Magnuson, T.S., 2007. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacierium from the Alvord Basin, Oregon. Applied and Environmental Microbiology, 73: 5928-5936.
  • 32. Mahoney, J., Slaught er, M., Langmuir, D., Rowson, J., 2007. Control of As and Ni release from a uranium mill tailings neutralization circuit: Solution chemistry, mineralogy and geochemical modeling of laboratory study results. Applied Geochemistry, 22: 2758-2776.
  • 33. Majzlan, J., Drahota, P., Filippi, M., Grevel, K-D., Kahl, W-A., Plášil, J., Boerio-Goates, J., Woodfield, B.F., 2012a. Thermodynamic properties of scorodite and parascorodite (FeAsO4 2H2O), kaňkite (FeAsO4 3,5H2O), and FeAsO4. Hydrometallurgy, 117-118: 47-56.
  • 34. Majzlan, J., Lazic, B., Armbruster, T., Johnson, M.B., White, M.A., Fisher, R.A., Plašil, J., Loun, J., Škoda, R., Novák, M., 2012b. Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH) 9H2O. Journal of Mineralogical and Petrological Sciences, 107: 133-148.
  • 35. Majzlan, J., Drahota, P., Filippi, M., 2014. Parageneses and crystal chemistry of arsenic minerals. Reviews in Mineralogy and Geochemistry, 77: 17-184.
  • 36. Majzlan, J., Amoako, F.Y., Kindlova, H., Drahota, P., 2015. Thermodynamic properties of zykaite, a ferric sulfoarsenate. Applied Geochemistry, 61: 294-301.
  • 37. Makreski, P., Stefov, S., Pejov, L., Jovanowski, G., 2015. Theoretical and experimental study of the vibrational spectra of (para)symplesite and hörnesite. Spectrochimica Acta Part A; Molecular and Biomolecular Spectroscopy, 144: 155-162.
  • 38. Mandl, M., Vyskovsky, M., 1994. Kinetics of arsenic (III) oxidation by iron (III) catalyzed by pyrite in the presence of Thiobacillus-ferrooxidans. Biotechnology Letters, 16: 1199-1204.
  • 39. Markl, G., Marks, M.A.W., Derrey, I., Gührig, J-E., 2014. Weathering of cobalt arsenides: natural assemblages and calculated stability reactions among secondary Ca-Mg-Co arsenates and carbonates. American Mineralogist, 99: 44-56.
  • 40. Marszałek, H., Wąsik, M., 2000. Influence of arsenic-bearing gold deposit on water quality in Zloty Stok mining area (SW Poland). Environmental Geology, 39: 888-892.
  • 41. Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1): 89-118.
  • 42. Mikulski, S.Z., 1996. Gold mineralization within contact-metamorphic and shear zones in the “Zloty Jar” quarry - the Zloty Stok As-Au deposit area (Sudetes). Geological Quarterly, 40 (3): 407-442.
  • 43. Mikulski, S.Z., Speczik, S., 2008. Organic and inorganic geochemistry of gold mineralization at the Zloty Stok, SW Poland. Applied Earth Science, 117: 149-159.
  • 44. Mikulski, S.Z., Speczik, S., 2016. The auriferous ore mineralization and its zonal distribution around the Variscan Kłodzko-Złoty Stok granitoid pluton in the Sudetes (SW Poland) - an overview. Geological Quarterly, 60 (3): 650-674.
  • 45. Mikulski, S.Z., Williams, I.S., 2014. Zircon U-Pb ages of granitoid apophyses in the western part of the Kłodzko-Złoty Stok Granite Pluton (SW Poland). Geological Quarterly, 58 (2): 251-262.
  • 46. Mikulski, S.Z., Williams, I.S., Bagiński, B., 2013. Early Carboniferous (Visean) emplacement of the collisional Klodzko-Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U-Pb ages. International Journal of Earth Sciences, 102: 1007-1027.
  • 47. Moses, C.O., Nordstrom, D.K., Herman, J.S., Mills, A.L., 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51: 1561-1571.
  • 48. Muszer, A., 2011. Gold at Złoty Stok - history, exploitation, characteristic and perspectives. Archivum Mineralogiae Monograph, 2: 45-62.
  • 49. Newman, D.K., Beveridge, T.J., Morel, F.M.M., 1997. Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63: 2022-2028.
  • 50. Nicholas, D.R., Ramamoorthy, S., Palace, V., Spring, S., Moore, J.N., Rozenzweig, F., 2003. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation, 14: 123-137.
  • 51. Ondruš, P., Veselovský, F., Hloušek, J., 1997a. A review of mineral associations and paragenetic groups of secondary minerals of the Jáchymov (Joachimsthal) ore district. Journal of Czech Geological Society, 42: 109-114.
  • 52. Ondruš, P., Veselovský, F., Hloušek, J., Skála, R., Vavřín, I., Frýda, J., Čejka, J., Gabašová, A., 1997b. Secondary minerals of the Jáchymov (Joachimsthal) ore district. Journal of Czech Geological Society, 42: 3-76.
  • 53. Paktunc, D., Bruggeman, K., 2010. Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Applied Geochemistry, 25: 674-683.
  • 54. Paktunc, D., Dutrizac, J., Gertsman, V., 2008. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochimica et Cosmochimica Acta, 72: 2649-2672.
  • 55. Parafiniuk, J., Siuda, R., 2006. Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geological Quarterly, 50 (4): 475-486.
  • 56. Parviainen, A., Lindsay, M.B.J., Perez-Lopez, R., Gibson, B.D., Ptacek, C.J., Blowes, D.W., Loukola-Ruskeeniemi, K., 2012. Arsenic attenuaton in tailings at a former Cu-W-As mine, SW Finland. Applied Geochemistry, 27: 2289-2299.
  • 57. Qin, W., Liu, K., Diao, M., Wang, J., Zhang, Y., Yang, C., Jiao, F., 2013. Oxidation of arsenite (As(III)) by ferric ion in the presence of pyrite and mixed moderately thermophilic culture. Hydrometallurgy, 137: 53-59.
  • 58. Robins, R.G., 1987. Solubility and stability of scorodite, FeAsO4 2H2O: discussion. American Mineralogist, 72: 842-844.
  • 59. Rodriguez-Freire, L., Sierra-Alvarez, R., Root, R., Chorover, J., Field, J.A., 2014. Biomineralization of arsenate to arsenic sulfides in greatly enhanced at mildly acidic conditions. Water Research, 66: 242-253.
  • 60. Rodriguez-Freire, L., Moore, S.E., Sierra-Alvarez, R., Root, R.A., Chorover, J., Field, J.A., 2016. Arsenic remediation by Formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnology and Bioengineering, 113: 522-530.
  • 61. Schippers, A., Jozsa, P., Sand, W., 1996. Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology, 62: 3424-3431.
  • 62. Smulikowski, K., 1979. Polymetamorphic evolution of the crystalline complex of Śnieżnik and Góry Złote Mts in the Sudetes (in Polish with English summary). Geologia Sudetica, 14: 7-76.
  • 63. Tomczyk-Żak, K., Kaczanowski, S., Drewniak, Ł., Dmoch, Ł., Sklodowska, A., Zielenkiewicz, U., 2013. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Science of the Total Environment, 461-462: 330-340.
  • 64. Tu, Z., Guo, Ch., Zhang, T., Lu, G., Wan, J., Liao, Ch., Dang, Z., 2017. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Hydrometallurgy, 167: 58-65.
  • 65. Vera, M., Schippers, A., Sand, W., 2013. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation - part A. Applied Microbiology and Biotechnology, 97: 7529-7541.
  • 66. Voigt, D.E., Brantley, S.L., Hennet, R.J-C., 1996. Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11: 633-643.
  • 67. Walker, F.P., Schreiber, M.E., Rimstidt, J.D., 2006. Kinetics of pyrite oxidative dissolution by oxygen. Geochimica et Cosmochimica Acta, 70: 1668-1676.
  • 68. Wiertz, J.V., Mateo, M., Escobar, B., 2006. Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30°C and 70°C. Hydrometallurgy, 83: 35-39.
  • 69. Wierzchołowski, B., 1976. Granitoids of the Kłodzko-Złoty Stok massif and their contact influence on the country rocks (petrographic characteristics) (in Polish with English summary). Geologia Sudetica, 11: 3-143.
  • 70. Yuan, T.C., Jia, Y.F., Demopoulos, G.P., 2005. Synthesis and solubility of crystalline annabergite (Ni3(AsO4)28H2O. Canadian Metallurgical Quarterly, 44: 449-456.
  • 71. Yu, J.Y., Park, M., Kim, J., 2002. Solubilities of synthetic schwertmannite and ferrihydrite. Geochemical Journal, 35: 119-132.
  • 72. Zhu, Y.N., Zhang, X.H., Chen, Y.D., Zeng, H.H., Liu, J., Liu, H.L., Wang, X.M., 2013. Characterization, dissolution and solubility of synthetic erythrite [Co3(AsO4)2 8H2O] and annabergite [Ni3(AsO4)2 8H2O] at 25 C. Canadian Metallurgical Quarterly, 51: 7-17.
  • 73. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., Żydko, K., 2011. Regionalizacja tektoniczna Polski (in Polish). Komitet Nauk Geologicznych PAN, Wrocław.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e2fac18-1031-44f0-8358-86586aa5af08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.