Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper gives conditions for algebraic independence of a collection of functions satisfying a certain kind of algebraic difference relations. As applications, we show algebraic independence of two collections of special functions: (1) Vignéras’ multiple gamma functions and derivatives of the gamma function, (2) the logarithmic function, q-exponential functions and q-polylogarithm functions. In a similar way, we give a generalization of Ostrowski’s theorem.
Czasopismo
Rocznik
Tom
Strony
457--472
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Kumamoto University Graduate School of Science and Technology 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
Bibliografia
- [1] J. Ax, On Schanuel’s conjectures, Ann. of Math. 93 (1971), 252–268.
- [2] D.M. Bradley, Multiple q-zeta values, J. Algebra 283 (2005), 752–798.
- [3] R.M. Cohn, Difference Algebra, Interscience Publishers John Wiley & Sons, New York, London, Sydney, 1965.
- [4] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2nd ed., 2004.
- [5] A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique, IV, Publ. Math. Inst. Hautes Études Sci. 20 (1964), 5–259.
- [6] C. Hardouin, Hypertranscendance des systèmes aux différences diagonaux, Compos. Math. 144 (2008), 565–581.
- [7] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92–98.
- [8] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
- [9] E.R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151–1164.
- [10] A. Levin, Difference Algebra, Algebra and Applications, vol. 8, Springer, New York, 2008.
- [11] T. Mansour, Identities for sums of a q-analogue of polylogarithm functions, Lett. Math. Phys. 87 (2009), 1–18.
- [12] M. Nishizawa, Generalized Hölder’s theorem for Vignéras’ multiple gamma function, Tokyo J. Math. 24 (2001), 323–329.
- [13] H. Ogawara, Another proof of Ostrowski–Kolchin–Hardouin theorem in difference algebra, Keio SFC Journal 13 (2013), 97–100.
- [14] A. Ostrowski, Sur les relations algébriques entre les intégrales indéfinies, Acta Math. 78 (1946), 315–318.
- [15] M. Rosenlicht, On Liouville’s theory of elementary functions, Pacific J. Math. 65 (1976), 485–492.
- [16] M.F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL(2, Z), [in:] Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), vol. 61 of Astérisque, Soc. Math. France, Paris, 1979, pp. 235–249.
- [17] J. Zhao, Multiple q-zeta functions and multiple q-polylogarithms, Ramanujan J. 14 (2007), 189–221.
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e2d8b60-8bc3-461d-b3e9-0dcf62b460b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.