PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation on the Compression Behaviours of 3D Angle‑interlock Woven Composites with Carbons Nanotube under High Strain Rates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Eksperymentalne badanie ściskania kompozytów 3D wzmacnianych tkaninami o skośnym splocie interlokowym modyfikowanych nanorurkami węglowymi przy dużych szybkościach odkształcania
Języki publikacji
EN
Abstrakty
EN
The compressive properties of 3D angle-interlock woven/epoxy resin composites with various carbon nanotube (CNTs) contents were investigated under quasi-static and high strain rate loading to evaluate the compressive failure modes, which were influenced by various CNT contents and different strain rates. The results indicated that the stress strain curves were strain rate sensitive, and the compressive failure stress of composites with various CNT contents were increased with a change the strain rates and CNT contents. The compressive failure modes of 3D angle-interlock woven composites without CNT tended to be in shear deformation, delamination fibre breakage and matrix crack together, and the failure modes of 3D angle-interlock woven composites with high CNT contents presented delamination and shear deformation.
PL
Badano właściwości ściskające kompozytów 3D wzmacnianych tkaninami o skośnym splocie interlokowym modyfikowanych nanorurkami węglowymi. W celu wyznaczenia uszkodzeń powstałych na skutek ściskania, na które wpływa zawartość nanorurek i szybkości odkształcania, badania przeprowadzono pod obciążeniem quasi-statycznym i przy dużych szybkościach ściskania. Wyniki wykazały, że krzywe ściskania zależały od szybkości odkształcania i zawartości nanorurek. Uszkodzenia mają charakter rozwarstwienia i deformacji pod wpływem naprężeń ścinających.
Rocznik
Strony
44--50
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Colleges of Textile and Clothing, JiangNan University, WuXi, P. R. China
autor
  • Colleges of Textile and Clothing, JiangNan University, WuXi, P. R. China
autor
  • College of Textiles, Dong Hua University, Shanghai, P. R. China
autor
  • Colleges of Textile and Clothing, JiangNan University, WuXi, P. R. China
autor
  • Colleges of Textile and Clothing, JiangNan University, WuXi, P. R. China
autor
  • Colleges of Textile and Clothing, JiangNan University, WuXi, P. R. China
Bibliografia
  • 1. Ma P, Gao Z. A review on the impact tension behaviours of textile structural composites. Journal of Industrial Textiles. 2013: 1528083713503001.
  • 2. Thakre PR, Lagoudas DC, Riddick JC, Gates TS, Frankland S-JV, Ratcliffe JG, et al. Investigation of the effect of single wall carbon nanotubes on interlaminar fracture toughness of woven carbon fibre-epoxy composites. Journal of Composite Materials. 2011; 45(10): 1091-107.
  • 3. Grimmer CS, Dharan C. Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fibre/polymer composites. Composites Science and Technology. 2010; 70(6): 901-8.
  • 4 Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Paipetis A, Kostopoulos V, et al. Enhancement of the mechanical performance of an epoxy resin and fibre reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale. Composites Part A: Applied Science and Manufacturing. 2007; 38(4):1076-81.
  • 5. Wichmann MHG, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties-Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics. 2006; 73(16): 2346-59.
  • 6. Romhány G, Szebenyi G. Interlaminar crack propagation in MWCNT/fibre reinforced hybrid composites. Express Polym Lett. 2009; 3(3): 145-51.
  • 7. Yokozeki T, Iwahori Y, Ishiwata S, Enomoto K. Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Composites Part A: Applied Science and Manufacturing. 2007; 38(10): 2121-30.
  • 8. Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK. Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing. 2009; 40(10): 1606-14.
  • 9 Soliman E, Shyka M, Taha MR. Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes. International Journal of Impact Engineering. 2012; 47: 39-47.
  • 10. Kim MS, Lee SE, Lee WJ, Kim CG. Mechanical Properties of MWNT-Loaded Plain-Weave Glass/Epoxy Composites. Advanced Composite Materials. 2009; 18(3): 209-19.
  • 11. Fan Z, Santare MH, Advani SG. Interlaminar shear strength of glass fibre reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing. 2008; 39(3): 540-54.
  • 12. Qiu J, Zhang C, Wang B, Liang R. Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology. 2007; 18: 275708.
  • 13. Davis DC, Whelan BD. An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering. 2011; 42(1): 105-16.
  • 14. Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, et al. High Strain Rate Behaviour of Multi-Walled Carbon Nanotubes-Polycarbonate Composites. Composites Part B: Engineering. 2013; 45(1): 417-422.
  • 15. Bhardwaj G, Upadhyay A, Pandey R, Shukla K. Non-linear flexural and dynamic response of CNT reinforced laminated composite plates. Composites Part B: Engineering. 2013; 45(1): 89-100.
  • 16. Borbón F, Ambrosini D. Dynamic response of composites sandwich plates with carbon nanotubes subjected to blast loading. Composites Part B: Engineering. 2013; 45(1): 466-473.
  • 17. Fernández C, Medina C, Pincheira G, Canales C, Flores P. The effect of multiwall carbon nanotubes on the in-plane shear behaviour of epoxy glass fibre reinforced composites. Composites Part B: Engineering. 2013; 55: 421-425.
  • 18. Ma P, Zhang F, Jiang G, Zhu Y. Transverse impact behaviours of glass warpknitted fabric/foam sandwich composites through carbon nanotubes incorporation. Composites Part B. 2014; 56(1): 847-856.
  • 19. Kostopoulos V, Baltopoulos A, Karapappas P, Vavouliotis A, Paipetis A. Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Composites Science and Technology. 2010; 70(4): 553-63.
  • 20. Jin L, Sun B, Gu B. Finite element simulation of three-dimensional angle-interlock woven fabric undergoing ballistic impact. Journal of The Textile Institute. 2012; 102(11): 982-993.
  • 21. Jin L, Hu H, Sun B, Gu B. Three-point bending fatigue behaviour of 3D angleinterlock woven composite. Journal of Composite Materials. 2011; 46(8): 883-894.
  • 22. Ma P, Jiang G, Chen Q, Miao X, Zhao S. Compression behaviours of carbon woven composites with carbon nanotube-filled epoxy resin under high strain rates. Textile Research Journal. 2014:10.1177/0040517514540768
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e2b3e66-9e2d-4fd2-957e-b911e7496656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.