PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Eco-Innovative Solution for Reuse of Leachate Chemical Precipitation Sludge: Application to Sanitary Landfill Coverage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sanitary landfill leachate was treated by chemical precipitation and the potential use of mixtures of the chemical precipitation sludge (CPS) generated and natural soil to cover the solid waste at sanitary landfills was evaluated. Tests were performed with soils having 0, 5 and 10% CPS, and the organic matter, pH, compaction, hydraulic conductivity, particle-size, liquid limit, plastic limit, and plasticity index were determined. It was found that leaching increased with CPS concentration, as well as the fine particles content in the soil, which reduced the hydraulic conductivity. pH was the most affected parameter, with values of 7.03, 7.12, and 11.46 for 0, 5 and 10% CPS, respectively. However, at 5% CPS, biodegradability was favored without a significant increase in the leaching process, showing that CPS can be used as temporary cover material, without adversely affecting the landfill system, being an eco-innovative solution for the final disposal of the sludge.
Twórcy
  • Institute of Engineering, National Autonomous University of Mexico, Circuito Escolar s/n, Ciudad Universitaria, Delegación Coyoacán, Mexico City 04510, Mexico
  • Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
  • FibEnTech/UBI-Fiber Materials and Environmental Technologies Research Unit, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • FibEnTech/UBI-Fiber Materials and Environmental Technologies Research Unit, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
autor
  • Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
  • Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
autor
  • FibEnTech/UBI-Fiber Materials and Environmental Technologies Research Unit, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
autor
  • FibEnTech/UBI-Fiber Materials and Environmental Technologies Research Unit, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  • Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
  • FibEnTech/UBI-Fiber Materials and Environmental Technologies Research Unit, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
Bibliografia
  • 1. APHA 2012. Standard Methods for the Examination of Water and Wastewater, 12th ed. American Public Health Association, American Water Works Association and Water Environment Federation, Washington.
  • 2. ASTM 2017a. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) Standard ASTM D2487, in: ASTM Volume 04.08 Soil and Rock (I): D421-D5876.
  • 3. ASTM 2017b. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), in: ASTM Volume 04.08 Soil and Rock (I): D421-D5876. West Conshohocken.
  • 4. ASTM 2016. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter 1.
  • 5. ASTM 2010. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils D4318-10. Report 4, 1-14.
  • 6. ASTM 2007. Standard test method for particle-size analysis of soils: ASTM D 422. ASTM International, 63, 1-8.
  • 7. ASTM 2005. Evaluation and selection of alternative daily covers (ADCs) for sanitary landfills (D6523).
  • 8. Chen P., Lin W.A., Zhan X.J., Yiang Y.Y. 2013. Influence of leachate soaking on strength and permeability of deeply dewatered. Rock and Soil Mechanics, 34, 337-341.
  • 9. Figueira C.M. 2009. Evaluation of the operation of the leachate treatment station at the Villa Ruiva landfill and rehabilitation proposal. M.S. Dissertation, Faculty of Science and Technology, New University of Lisbon, Lisbon, Portugal.
  • 10. Galantini J., Rosell R., Iglesias J. 1994. Determination of organic matter using the method of Walkley and Black in granulometric fractions of the soil. Soil Science, 81-83.
  • 11. ISO 2017. Soil Quality - Sampling. ISO 18400 101:2017. International Organization for Standardization.
  • 12. Jiao Y.J. 2007. Study of sewage sludge of chongqing used as daily cover material in MSW landfill. MSc. Dissertation, Chongqing University, Chongqing, China.
  • 13. Jun H., Feng L., Yong L., Xi-Lin C. 2015. Modified sewage sludge as temporary landfill cover material. Water Science and Engineering, 8, 257-262.
  • 14. Kamon M., Inazumi S., Rajasekaran G., Katsumi T. 2002. Evaluation of waste sludge compatibility for landfill cover application. Soils and Foundations, 42, 13-27.
  • 15. Li B., Liu D., Yang L. 2003. Selection of temporary cover materials for bioreactor landfills. Environmental Science & Technology, 26, 29-30.
  • 16. Li L. 2006. Study on sludge solidification technology and heavy metal pollution control. Ph.D. Thesis, Hohai University, Nanjing, China.
  • 17. Peng Y. 2013. Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10(2), S2567-S2574.
  • 18. Raghab S.M., Abd El Meguid A.M., Hegazi H.A. 2013. Treatment of leachate from municipal solid waste landfill. HBRC Journal, 9(2), 187-192.
  • 19. Ramalho M.S. 2015. Treatment of leachates by chemical precipitation, carbonation, and phytoremediation tuning. MSc. Dissertation, Beja Polytechnic Institute, Beja, Portugal.
  • 20. Rico A., del Castillo H. 1992. Considerations on compaction of soils in transport infrastructure works. Ministry of Communications and Transportation of México, 2, 187-200.
  • 21. Safari E., Bidhendi G.N. 2007. Removal of manganese and zinc from Kahrizak landfill leachate using daily cover soil and lime. Waste Management, 27, 1551-1556.
  • 22. U.S. EPA 2004. Method 9045D. Soil and Waste pH. United States Environmental Protection Agency.
  • 23. U.S. EPA 1994. Test Method 1312. Synthetic Precipitation Leaching Procedure, SPLP. United States Environmental Protection Agency.
  • 24. Wang W., Luo Y., Qiao W. 2010. Possible solutions for sludge dewatering in China. Frontiers of Environmental Science & Engineering, 4, 102-107.
  • 25. Xu W., Xu J., Liu J., Li H., Cao B., Huang X., Li G. 2014. The utilization of lime-dried sludge as resource for producing cement. Journal of Cleaner Production, 83, 286-293.
  • 26. Yang J.K., Yank X., Li Y.L., Zhang M., Li Y., He S. 2012. Dewatering of sewage sludge with skeleton builder and engineering properties of dewatered sludge. Journal of Wuhan University of Science and Technology, 35, 133-136.
  • 27. Zhou L.Q., Wu C.L. 2011. Study of modified sludge as landfill cover soil. Chinese Journal of Environmental Engineering, 5, 2864-2868.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e28bfa5-1cf2-48bf-a1da-98e896f40835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.