Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We construct a model for the level by level equivalence between strong compactness and supercompactness with an arbitrary large cardinal structure in which the least supercompact cardinal κ has its strong compactness indestructible under κ-directed closed forcing. This is in analogy to and generalizes the author’s result in Arch. Math. Logic 46 (2007), but without the restriction that no cardinal is supercompact up to an inaccessible cardinal.
Wydawca
Rocznik
Tom
Strony
185--194
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, Baruch College of CUNY, New York, NY 10010, U.S.A.
- The CUNY Graduate Center, Mathematics, 365 Fifth Avenue, New York, NY 10016, U.S.A.
Bibliografia
- 1] A. Apter, Indestructibility under adding Cohen subsets and level by level equivalence, Math. Logic Quart. 55 (2009), 271–279.
- [2] A. Apter, Patterns of compact cardinals, Ann. Pure Appl. Logic 89 (1997), 101–115.
- [3] A. Apter, Singular failures of GCH and level by level equivalence, Bull. Polish Acad. Sci. Math. 62 (2014), 11–21.
- [4] A. Apter, Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness, Arch. Math. Logic 46 (2007), 155–163.
- [5] A. Apter and J. Cummings, Identity crises and strong compactness, J. Symbolic Logic 65 (2000), 1895–1910.
- [6] A. Apter and J. Cummings, Identity crises and strong compactness II: strong cardinals, Arch. Math. Logic 40 (2001), 25–38.
- [7] A. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic 63 (1998), 1404–1412.
- [8] A. Apter, M. Gitik and G. Sargsyan, Indestructible strong compactness but not supercompactness, Ann. Pure Appl. Logic 163 (2012), 1237–1242.
- [9] A. Apter and J. D. Hamkins, Indestructibility and the level-by-level agreement between strong compactness and supercompactness, J. Symbolic Logic 67 (2002), 820–840.
- [10] A. Apter and S. Shelah, On the strong equality between supercompactness and strong compactness, Trans. Amer. Math. Soc. 349 (1997), 103–128.
- [11] M. Gitik, Changing cofinalities and the nonstationary ideal, Israel J. Math. 56 (1986), 280–314.
- [12] J. D. Hamkins, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103–146.
- [13] T. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
- [14] J. Ketonen, Strong compactness and other cardinal sins, Ann. Math. Logic 5 (1972), 47–76.
- [15] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385–388.
- [16] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, Israel J. Math. 5 (1967), 234–248.
- [17] M. Magidor, How large is the first strongly compact cardinal? or A study on identity crises, Ann. Math. Logic 10 (1976), 33–57.
- [18] T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974/75), 327–359.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e194400-3ac6-4ce9-966b-6e1c37a31d7b