Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microplastics are emerging pollutants, formed through weathering, with sizes equal to or smaller than 5 mm. They can reach surface and groundwater sources, as well as oceans and seas through natural pathways or from the discharge of liquid effluents, causing immeasurable effects on human beings. This study aimed to evaluate the optimal conditions for the removal of polyethylene (PE) and expanded polystyrene (EPS) microplastics through coagulation and flocculation processes using aluminum sulfate. To achieve this goal, two 22 full factorial designs were employed, including two replicates at the central points. The sizes of the microplastics were fixed at 0.6 mm and 0.9 mm for PE and EPS, respectively. The selected independent variables were Al2 (SO4)3 and pH. The experiments were conducted considering rapid mixing parameters (400 rpm for 1 min), slow mixing (100 rpm for 15 min), and sedimentation (30 min), with a velocity of 0.1 cm•min–1 in the Jar Test. Turbidity determination was applied to quantify the remaining microplastics. Consequently, it was observed that the highest efficiency occurred for PE microplastics at 4.25 mg•L–1 of Al2 (SO4)3 and pH 5, and for EPS microplastics at 6.00 mg•L–1 of Al2 (SO4)3 and pH 4, resulting in removal rates of 96.81% and 96.30% and turbidity levels of 0.38 and 0.50 NTU, respectively. The removal efficiencies of microplastics were similar, with a decrease at pH 6 for both, as low ionic strength prevents the release of H+ ions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
163--168
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
- School of Civil and Environmental Engineering, Goias Federal University, University Avenue 1488, Goiânia 74605-220, Brazil
autor
- School of Civil and Environmental Engineering, Goias Federal University, University Avenue 1488, Goiânia 74605-220, Brazil
- School of Civil and Environmental Engineering, Goias Federal University, University Avenue 1488, Goiânia 74605-220, Brazil
- School of Civil and Environmental Engineering, Goias Federal University, University Avenue 1488, Goiânia 74605-220, Brazil
- School of Civil and Environmental Engineering, Goias Federal University, University Avenue 1488, Goiânia 74605-220, Brazil
Bibliografia
- 1. Amanto-Lourenço L.F., Oliveira R.C., Júnior G.R., Galvão L.S., Ando R.A., Mauad T. 2021. Presence of Airborne Microplastics in Human Llung Tissue. Journal of Hazardous Materials, 416, 126124, 1–6.
- 2. Barboza L.G.A., Gimenez B.C.G. 2015. Microplastics in the marine environment: Current trends and future perspectives. Marine Pollution Bulletin, 97, 5–12.
- 3. Chang X., Xue Y., Li J., Zou L., Tang M. 2019. Potential health impact of environmental micro- and nanoplastics pollution. Journal of Applied Toxicology, 1, 1–12.
- 4. Cole M., Lindeque P., Fileman E., Halsband C., Goodhead R., Moger J., Galloway T.S. 2013. Microplastic Ingestion by Zooplankton. Environmental Science e Technology, 47, 6646–6655.
- 5. Coppock R.L., Cole M., Lindeque P.K., Queirós A.M., Galloway T.A. 2017. Small-scale. portable method for extracting microplastics from marine sediments. Environmental Pollution, 230, 829–837.
- 6. Galloway T.S. 2015. Micro-and Nano-plastics and Human Health. Marine Anthropogenic Litter, 1, 343–366.
- 7. Kokalj A.J., Horvat P., Skalar T., Krzan A. 2017. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Science of the Total Environment, 615, 761–766.
- 8. Lapointe M., Farner J., Hernandez L.M., Tufenkji N. 2020. Understanding and Improving Microplastics Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54(14), 8719–8727.
- 9. Lee Y.K., Castillo C.R., Hong S., Hur J. 2020. Characteristics of microplastic polymer-derived dissolved organic matter and its potential as a disinfection byproduct precursor. Water Research, 175, 1–8.
- 10. Li J., Yang D., Li L., Jabeen K., Shi H. 2015. Microplastics in commercial bivalves from China. Environmental Pollution, 207, 190–195.
- 11. Ma B., Xue W., Hu C., Liu H., Qu J., Li L. 2019. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167.
- 12. Melchior A.G. 2019. Espectroscopia de Infravermelho: estudando a contaminação por macroplásticos em praias Fluminenses. Rio de Janeiro: UFF.
- 13. Mizukawa K., Takada H., Ito M., Geok Y.B., Hosoda J., Yamashita R., Saha M., Suzuki, S., Miguez C., Frias J., Antunes J.C., Sobral P., Santos I., Micaelo C., Ferreira A.M. 2013. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets. Marine Pollution Bulletin, 70, 296–302.
- 14. Murphy F., Ewins C., Carbonnier F., Quinn B. 2016. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science e Technology, 50(11), 5800–5808
- 15. Neto J.A.B., Carvalho D.G., Medeiros K., Drabinski T.L., Melo G.V., Silva R.C.O., Silva D. C.P., Batista L.S., Dias G.T.M., Fonseca E.M., Filho J.R.S. 2019. The impact of sediment dumping sites on the concentrations of microplastic in the inner continental shelf of Rio de Janeiro/Brazil. Marine Pollution Bulletin, 149, 1–8.
- 16. Olivatto G.P., Martins M.C.T., Montagner C.C., Henry T.B., Carreira R.S. 2019. Microplastic contamination in surface waters in Guanabara Bay. Rio de Janeiro. Brazil. Marine Pollution Bulletin, 139, 157–162.
- 17. Pan Z., Guo H., Chen H., Wang S., Sun X., Xou Q., Zhang Y., Lin H., Cai S., Huang J. 2019. Microplastics in the Northwestern Pacific: Abundance. distribution. and characteristics. Science of the Total Environment, 650, 1913–1922.
- 18. Pyra K., Tarach K.A., Śrębowata A., Cabrera I.M. 2020. Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel. Applied Catalysis B: Environmental, 277, 1–10.
- 19. Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Rongioletti Mca., Baiocco F., Draghi S., D’amore E., Rinaldo D., Matta M., Giorgini E. 2021. Plasticenta: First evidence of microplastics in human placenta. Environmental International, 146, 106274.
- 20. Sembiring E., Fajar M., Handajani M. 2021. Performance of rapid sand filter – single media to remove microplastics. Water Supply, 21(5), 2273–2284.
- 21. Skaf D.W., Punzi V.L., Rolle J.T., Kleinberg K.A. 2020. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chemical Engineering Journal, 386, 123807.
- 22. Silva-Cavalcanti J.S., Silva J.D.B., França E.J., Araújo M.C.B., Gusmão F. 2017. Microplastics ingestion by a common tropical freshwater fishing resource. Environmental Pollution, 221, 1–9.
- 23. Wei S., Luo H., Zou J., Chen J., Pan X., Rousseau D.P.L., Li J. 2020. Characteristics and removal of microplastics in rural domestic wastewater treatment facilities of China. Science of the Total Environment, 739, 139935.
- 24. Xue J., Peldszus S., Van Dyke M.I., Huck P.M. 2021. Removal of polystyrene microplastic spheres by alum-based coagulation-flocculation-sedimentation (CFS) treatment of surface waters. Chemical Engineering Journal, 422, 130023.
- 25. Zhang N., Li Y.B., He H.R., Zhang J.F., Ma G.S. 2021. You are what you eat: Microplastic in the feces of young men living in Beijing. Science of the Total Environment, 767, 144345.
- 26. Zhang Y., Pu S.L.V.X., Gao Y., Ge L. 2020. Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400, 2–13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e16e03e-e945-47cd-9430-c0d887d09786