PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary study on wave feld and dispersion characteristics of channel waves in VTI coal seam media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal seam is a sedimentary rock with bedding, which can be regarded as VTI medium. VTI medium model is more suitable for real coal seam. However, existing channel wave theories generally assume that coal seams are isotropic for mathematical simplicity, and there is no study on the properties of channel waves in VTI media. In this paper, we deduce the theoretical dispersion equation of Love channel waves in the three-layer VTI model and analyze the parameter efects on the dispersion curve for the frst time. The channel wave feld in VTI media is simulated by three-dimensional staggered-grid finite diference method. The results indicate that polarization of both qP- and qSV-waves is not parallel or perpendicular to the orientation of the wave traveling in VTI media, while the polarization of SH wave is normal to wave propagation direction at horizontal plane. Therefore, it is wise to use Love channel waves to conduct feld exploration because of the uniqueness of dispersion curves in the VTI media for the Love channel waves comparing with that in isotropic media. The velocities of the Love channel wave in VTI media are higher than that in isotropic media. The coal seam thickness primarily infuences the Airy frequency phase, while the Airy phase velocity remains stable. Both the S-wave velocity and γ parameter of coal seam significantly afect Airy phase velocity. Severe errors may occur during in the coal thickness inversion when using the dispersion curve of Love channel wave in isotropic media, and dispersion curve in VTI media should be adopted. In terms of the amplitude distribution, Love channel waves appear to have similar patterns in both the VTI media and the isotropic media.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1379--1390
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, China
autor
  • The School of Electronic and Information Engineering, Xi’an Jiaotong University, Shaanxi, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
Bibliografia
  • 1. Buchanan DJ, Jackson P, Davis D (1983) Attenuation and anisotropy of channel waves in coal seams. Geophysics 48:133–147. https://doi.org/10.1190/1.1441453
  • 2. Chen TJ, Wang X, Cui RF (2010) The detectability analysis on HTI tectonic coal cracks by azimuthal AVO’s forward modeling. J China Coal Soc 35(4):640–644. https://doi.org/10.13225/j.cnki.jccs.2015.04.015 (in Chinese)
  • 3. Dong SH (2008) Test on elastic anisotropic coefficients of gas coal. Chin J Geophys 51(3):947–952. https://doi.org/10.1002/cjg2.1257 (in Chinese)
  • 4. Dresen L, Rüter H (1994) Seismic coal exploration, part B: in-seam seismics. Pergamon, Oxford
  • 5. Essen K, Bohlen T, Friederich W, Meier T (2007) Modelling of Rayleigh-type seam waves in disturbed coal seams and around a coal mine roadway. Geophys J Int 170:511–526. https://doi.org/10.1111/j.1365-246X.2007.03436.x
  • 6. Feng L, Zhang Y (2017) Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components. Acta Geophys 65(4):757–764. https://doi.org/10.1007/s11600-017-0069-y
  • 7. He WX (2017) Three dimensions in-seam wave field simulation and detection method research of working face fault. China University of Mining and Technology, Xuzhou
  • 8. He WX, Ji GZ, Dong SH et al (2017) Theoretical basis and application of vertical Z-component in-seam wave exploration. J Appl Geophys 138(3):91–101. https://doi.org/10.1016/j.jappgeo.2017.01.008
  • 9. Hu ZA, Zhang PS, Xu GQ (2018) Dispersion features of transmitted channel waves and inversion of coal seam thickness. Acta Geophys 66(5):1001–1009. https://doi.org/10.1007/s11600-018-0192-4
  • 10. Ji GZ, Cheng JY, Zhu PM et al (2012) 3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine. Chin J Geophys 55(2):645–654. https://doi.org/10.6038/j.issn.0001-5733.2012.02.028 (in Chinese)
  • 11. Ji GZ, Wei JC, Yang ST et al (2018) Three-component polarization migration of channel waves for prediction ahead of coal roadway. J Appl Geophys 159(12):475–483. https://doi.org/10.1016/j.jappgeo.2018.09.028
  • 12. Ji GZ, Wei JC, Yang ST et al (2019) Preliminary study on wave field and dispersion characteristics of channel waves in HTI coal seam medium. Chin J Geophys 62(2):789–801. https://doi.org/10.6038/cjg2019M0230 (in Chinese)
  • 13. Korn M, Emmerich H (1988) Waves in discontinuous coal seams with absorption: finite difference simulations. Explor Geophys 19(2):106–108. https://doi.org/10.1071/EG988106
  • 14. Krey TC (1963) Channel waves as a tool of applied geophysics in coal mining. Geophysics 28:701–714. https://doi.org/10.1190/1.1439258
  • 15. Krey T, Arnetzb H, Knecht M (1982) Theoretical and practical aspects of absorption the application of in-seam seismic coal exploration. Geophysics 47(12):1645–1656. https://doi.org/10.1190/1.1441314
  • 16. Li H, Zhu PM, Ji GZ, Zhang Q (2015) Modified image algorithm to simulate seismic channel waves in 3D tunnel mode. Geophys Prospect 64(5):1259–1274. https://doi.org/10.1111/1365-2478.12351
  • 17. Liu E, Crampins S, Roth B (1991) Modelling channel waves with synthetic seismograms in an anisotropic in-seam seismic survey. Geophys Prospect 40(5):13–540. https://doi.org/10.1111/j.1365-2478.1992.tb00539.x
  • 18. Morcote A, Mavko G, Prasad M (2010) Dynamic elastic properties of coal. Geophysics 75(6):E227–E234. https://doi.org/10.1190/1.3508874
  • 19. Rader D, Schott W, Dresen L, Ruter H (1985) Calculation of dispersion curves and amplitude-depth distributions of Love channel waves in horizontally-layered media. Geophys Prospect 33:800–816. https://doi.org/10.1111/j.1365-2478.1985.tb00779.x
  • 20. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966. https://doi.org/10.1190/1.1442051
  • 21. Wang W, Gao X, Li SY et al (2012) Channel wave tomography method and its application in coal mine exploration: an example from Henan Yima Mining Area. Chin J Geophys 55(3):1054–1062. https://doi.org/10.6038/j.issn.0001-5733.2012.03.036 (in Chinese)
  • 22. Wang B, Liu S, Zhou F et al (2017) Diffraction characteristics of small fault ahead of tunnel face in coal roadways. Earth Sci Res J 21(2):95–99. https://doi.org/10.15446/esrj.v21n2.64938
  • 23. Yang ST, Cheng JL (2012) The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation. Chin J Geophys 55(2):655–662. https://doi.org/10.6038/j.issn.0001-5733.2012.02.029 (in Chinese)
  • 24. Yang XH, Cao SY, Li DC et al (2014) Analysis of quality factors for Rayleigh channel waves. Appl Geophys 11(1):107–114. https://doi.org/10.1007/s11770-014-0409-5
  • 25. Yang ST, Wei JC, Cheng JL et al (2016) Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models. Appl Geophys 13(04):621–630. https://doi.org/10.1007/s11770-016-0582-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e13afbd-5262-4834-a911-944a4c0158a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.