PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie pola temperatury oraz odkształceń i naprężeń termicznych wielowarstwowej konstrukcji gruntowo-stalowej
Języki publikacji
EN PL
Abstrakty
EN
The technology of renewal of metal corrugated structures allows efficient and economical reconstruction of existing reinforced concrete structures by the method of encapsulation. However, such structures can be exposed to adverse temperature effects that in combination with traffic loadings could influence the operational reliability of the structures. This article deals with the method of evaluation of the stress-strain state of a three-layer cylindrical structure. The technique is based on the thermo-elasticity theory. The study is performed in two steps: determining the temperature field of a structure, and then calculating the temperature stresses and deformations. As a result of calculations, it was established that the level of temperature field and stresses in a three-layer structure caused by the maximum and minimum ambient temperatures can reach a significant level.
PL
Technologia wzmacniania istniejących żelbetowych obiektów inżynierskich elementami z blachy falistej umożliwia ich sprawną i ekonomiczną naprawę. Niemniej jednak, takie konstrukcje mogą być narażone na niekorzystne oddziaływanie temperatury, co w połączeniu z obciążeniem ruchem może wpływać na ich niezawodność. W artykule przedstawiono metodę wyznaczenia stanu naprężeń i odkształceń w trzywarstwowej konstrukcji o przekroju kołowym. Przedstawiona metodologia jest oparta na teorii termosprężystości. Praca została podzielona na dwa etapy: określenie pola temperatury w obrębie konstrukcji, a następnie obliczenie naprężeń termicznych i odkształceń. W wyniku obliczeń ustalono, że wartości pola temperatury oraz naprężeń wywołane w konstrukcji przez wpływ maksymalnych i minimialnych temperatur otoczenia mogą okazać się istotne.
Rocznik
Strony
65--78
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Dnipro National University of Railway Transport named after academician V. Lazaryan, Department of Rolling Stock and Track, Lviv Branch, I. Blazhkevych Str., 12-a, Lviv, 79052, Ukraine
autor
  • Dnipro National University of Railway Transport named after academician V. Lazaryan, Department of Rolling Stock and Track, Lviv Branch, I. Blazhkevych Str., 12-a, Lviv, 79052, Ukraine
  • Lviv National Agrarian University, Department of Building Constructions, V. Velykoho Str., Dublyany, Zhovkivskyy r-n, Lvivska obl., 80381, Ukraine
autor
  • Technical University of Dresden, Institute of Railway Systems and Public Transport, Hettnerstraße 2, 01069 Dresden, Germany
Bibliografia
  • 1. Machelski C.: Steel plate curvatures of soil-steel structure during construction and exploatition. Roads and Bridges - Drogi i Mosty, 15, 3, 2016, 207-220, DOI: 10.7409/rabdim.016.013
  • 2. Machelski C., Janusz L., Czerepak A.: Estimation of stress level in the corrugated soil-steel structure based on deformations in the crown. Journal of Traffic and Transportation Engineering, 4, 2016, 186-193, DOI: 10.17265/2328-2142/2016.04.002
  • 3. Machelski C., Mumot M.: Corrugated shell displacements during the passage of a vehicle along a soil-steel structure. Studia Geotechnika et Mechanica, 38, 4, 2016, 29-36, DOI: 10.1515/sgem-2016-0028
  • 4. Maleska T., Bęben D.: The efect of mine induced tremors on seismic response of soil-steel bridges. 3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018), Les Ulis, France, MATEC Web of Conferences, 174, 04002, 2018, 1-10, DOI: 10.1051/matecconf/201817404002
  • 5. Kovalchuk V., Markul R., Pentsak A., Parneta B., Gajda O., Braichenko S.: Study of the stressstrain state in defective railway reinforcedconcrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 89, 5/1, 2017, 37-44, DOI: 10.15587/1729-4061.2017.109611
  • 6. Sobotka M., Machelski C.: Hysteretic live load effect in soil-steel structure. Engineering Transactions, 64, 4, 2016, 493-499
  • 7. Kovalchuk V., Kovalchuk Y., Sysyn M., Stankevych V., Petrenko O.: Estimation of carrying capacity of metallic corrugated structures of the type multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 91, 1/1, 2018, 18-26, DOI: 10.15587/1729-4061.2018.123002
  • 8. Machelski C., Korusiewicz L.: Deformation of buried corrugated metal box structure under railway load. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 191-201, DOI: 10.7409/rabdim.017.013
  • 9. Machelski C., Janusz L., Tomala P., Wiliams K.: Application of results of test in developing 2D model for soilsteel railway bridges. Conference Transportation Research Board of National Academies, Washington D.C., 12-15 January 2018, Paper 19-05399
  • 10. Machelski C.: Stiffness of layered shells in soil-steel bridge structures. Roads and Bridges - Drogi i Mosty, 10, 4, 2011, 55-78
  • 11. Kunecki B., Korusiewicz L.: Field tests of large-span metal arch culvert during backfilling. Roads and Bridges - Drogi i Mosty, 12, 3, 2013, 283-295, DOI: 10.7409/rabdim.013.020
  • 12. Mistewicz M.: Risk assessment of the use of corrugated metal sheets for construction of road soil-shell structures. Roads and Bridges-Drogi i Mosty, 18, 2, 2019, 89-107, DOI: 10.7409/rabdim.019.006
  • 13. Bęben D.: Experimental Testing of Soil-Steel Railway Bridge Under Normal Train Loads.In: Experimental Vibration Analysis for Civil Structures. Lecture Notes in Civil Engineering, 5, 2018, 805-815, DOI: 10.1007/978-3-319-67443-8_71
  • 14. Maleska T., Bęben D.: Behaviour of corrugated steel plate bridge with high soil cover under seismic excitation. The 3rd Scientific Conference of Environmental Challenges in Civil Engineering (ECCE 2018), Les Ulis, France, MATEC Web of Conferences, 174, 04003, 2018, 1-11, DOI: 10.1051/matecconf/201817404003
  • 15. Korusiewicz L., Kunecki B.: Behaviour of the steel box-type culvert during backfilling. Archives of civil and mechanical engineering, Vol. XI, No. 3, 2011, 638-650
  • 16. Mak A.C., Brachman R.W.I., Moore I.D.: Measured response of a deeply corrugated box culvert to three dimensional surface loads. Transportation Research Board Annual Conference, Washington D.C., Paper 09-3016, 2009, 14 p.
  • 17. Bęben D.: Numerical analysis of a soil-steel bridge structure. Baltic Journal of Road and Bridge Engeineering, 4, 1, 2009, 13-21, DOI: 10.3846/1822-427X.2009.4.13-21
  • 18. Luchko Y.Y., Kovalchuk V.V.: Vymiriuvannia napruzheno-deformovanoho stanu konstruktsii mostiv pry zminnykh temperaturakh i navantazhenniakh. Monohrafiia, Kameniar, Lviv, 2012, 235 p. (in Ukraine)
  • 19. Prakash Rao D.S.: Temperature Distribution and Stresses in Concrete Bridges. American Concrete Institute, ACI Journal, Vol. 83, 4, 1986, 588-596
  • 20. Gera B., Kovalchuk V.: A study of the effects of climatic temperature changes on the corrugated structure of a culvert of a transportation facility. Eastern-European Journal of Enterprise Technologies, 99, 3/7, 2019, 26-35, DOI: 10.15587/1729-4061.2019.168260
  • 21. Hakenjos V., Richter K., Gerber A., Wiedermeyer J.: Untersuchung der Bewegungen von Brűckenbemwerken infolge Temperatur und Verkehrsbelastung am Beispiel einer Stahlbrűcke. Stanbaukrupp Industrietechnik GmbH, Vol. 54, 2, 1985, 55-59
  • 22. Hoffman P.C., Meclur R.M., West H.H.: Temperature Problem in a Prestressed Box-Girder Bridge. Transportation Research Record, 982, 1984, 42-50
  • 23. Luchko Y.Y, Hnativ Yu M., Kovalchuk V.V.: Doslidzhennia temperaturnoho polia ta napruzhenoho stanu prohonovoi budovy stalezalizobetonnoho mosta. Visnyk ternopilskoho natsionalnoho tekhnichnoho universytetu, 52, 2, 2013, 29-38
  • 24. Kuryłowicz-Cudowska A.: Determination of Thermo- physical Parameters Involved in The Numerical Model to Predict the Temperature Field of Cast-In-Place Concrete Bridge Deck. Materials, 12, paper 3089, 2019, 1-30, DOI: 10.3390/ma12193089
  • 25. Karpiuk V., Syomina Y.A., Antonova D.V.: Bearing Capacity of Common and Damaged CFRP-Strengthened R. C. Beams Subject to High-Level Low-Cycle Loading. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 185-199, DOI: 10.4028/www.scientific.net/MSF.968.185.
  • 26. Karpiuk V., Syomina Y.A., Antonova D.V.: Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structures Support Zones. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 209-226, DOI: 10.4028/www.scientific.net/MSF.968.209
  • 27. Ahaieva O., Karpiuk V., Posternak O.: Simulation of Design Reliability and Bearing Capacity of Normal and Oblique Sections of Span Prestressed Reinforced Concrete Structures. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 267-280. DOI: 10.4028/www.scientific.net/MSF.968.267
  • 28. Podstrigach Ya.S., Lomakin V.A., Kolyano Yu.M.: Termouprugost tel neodnorodnoy strukturyi. Nauka, 1984, 368 p. (in Russian)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e13a490-fa9b-4f9a-a0ff-fb5f1c570cb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.