PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie matematyczne rozprzestrzeniania się w atmosferze gazów cięższych od powietrza z uwzględnieniem przeszkód terenowych

Identyfikatory
Warianty tytułu
EN
Mathematical modelling of heavy gas dispersion in the atmosphere taking into account terrain obstacles
Języki publikacji
PL
Abstrakty
PL
Celem pracy było opracowanie parametrycznego modelu rozprzestrzeniania się w atmosferze gazów cięższych od powietrza o nazwie HGDM, który uwzględnia występowanie przeszkód terenowych, zrealizowanie jego implementacji komputerowej oraz przeprowadzenie oceny jakości modelu. Jest to pierwszy tego typu model opracowany w Polsce, ponieważ skonstruowany w kraju model UMDSAOS (Borysiewicz i in., 2000; Gałkowski, 2006) dotyczy rozprzestrzeniania się gazów cięższych od powietrza tylko nad terenem płaskim. Przedstawiony na wstępie monografii przegląd stanu wiedzy z zakresu badań doświadczalnych nad rozprzestrzenianiem się w atmosferze gazów cięższych od powietrza i modelowania matematycznego tego procesu uzupełnia brak tego typu opracowań w polskim piśmiennictwie. W koncepcji modelu wykorzystano prace wielu badaczy opublikowane w uznanej literaturze światowej. W zakresie rozwiązań szczegółowych przyjętych przez autorkę, model HGDM stanowi oryginalną całość. W szczególności na uwagę zasługują dwa nowatorskie elementy wykonanej pracy. Pierwszym z nich jest modyfikacja, opracowanej przez Webbera i in. (1995), metody parametryzacji wpływu przeszkód terenowych na rozprzestrzenianie się w atmosferze gazów cięższych od powietrza. Metoda ta dotyczy przeszkód litych. W pracy rozszerzono ją również dla przeszkód porowatych, takich jak, szpalery drzew lub przewody rurowe umieszczone na stojakach. Drugi nowy element to uwzględnienie alternatywnego sposobu opisu procesu mieszania się smugi zanieczyszczeń z otaczającym powietrzem przy wykorzystaniu metod opracowanych przez Briggsa i in. (2001) i Nowickiego (1976). Metoda Briggsa i in. (2001), dotycząca parametryzacji wciągania masy powietrza przez górną powierzchnię smugi zanieczyszczeń zarówno na etapie, gdy. smuga ma gęstość większą od gęstości powietrza, jak i na etapie, gdy gęstość smugi staje się porównywalna z gęstością powietrza, należy do nowszych metod i była wdrożona tylko w modelu HEGADAS3+. Metoda Nowickiego (1976), dotycząca parametryzacji mieszania się smugi zanieczyszczeń z otaczającym powietrzem przez powierzchnie boczne smugi na etapie, gdy smuga gazów ma gęstość porównywalną z gęstością powietrza, nie była jak dotąd wykorzystywana w modelach rozprzestrzeniania się w atmosferze gazów cięższych od powietrza. Model HGDM wykorzystano do pokazania, jak wysokość, szerokość i stopień przepuszczalności przeszkody wpływają na rozcieńczanie smugi zanieczyszczeń. Ocenę jakości modelu HGDM przeprowadzono, wzorując się na protokole opracowanym w toku realizacji międzynarodowego projektu SMEDIS. Jest to pierwsze zastosowanie metodyki SMEDIS w Polsce. Ocenę statystyczną modelu HGDM zrealizowano, porównując wyniki obliczeń otrzymane przy wykorzystaniu modelu z danymi pomierzonymi podczas badań prowadzonych w dużej skali w terenie, zestawionymi w specjalistycznych, komputerowych bazach MDA i SMEDIS. Praca kończy się porównaniem trzech metod parametryzacji wpływu przeszkód terenowych na rozprzestrzenianie się gazów cięższych odpowietrza, wdrożonych w modelu HGDM. Dwie z nich zostały opracowane przez Cleavera i in. (1995) oraz Webbera i in. (1995), a trzecia powstała przez rozszerzenie przez autorkę metody Webbera i in. (1995). Wnioskowanie, czy istnieją statystycznie istotne różnice w wynikach modelowania przy stosowaniu trzech różnych metod parametryzacji przeprowadzono, wykorzystując program BOOT opracowany przez Hannę i in. (1993). Prezentowana metodyka ilościowej oceny skutków środowiskowych w sytuacjach awaryjnych, ciągłych w czasie uwolnień do atmosfery gazów cięższych od powietrza z powierzchniowego, przyziemnego źródła emisji, zdaniem autorki, może znaleźć praktyczne zastosowania. Stanowi potencjalne narzędzie do stosowania w procedurach dotyczących: ocen oddziaływania na środowisko, analiz bezpieczeństwa, planowania operacyjno-ratowniczego i efektywnego zagospodarowania przestrzennego. Dla realizacji symulacji z wykorzystaniem modelu HGDM wszystkie dane wejściowe są łatwo dostępne, w szczególności dane meteorologiczne mogą być pozyskane z rutynowych pomiarów prowadzonych Polsce. Czas obliczeń jest zdecydowanie krótszy w porównaniu z czasem obliczeń potrzebnym przy stosowaniu bardziej złożonych modeli matematycznych, tak więc symulacje z użyciem modelu HGDM mogą być wykonywane w czasie rzeczywistym.
EN
The aim of this research work has been to formulate an integral model called HGDM, which describes heavy gas dispersion in the atmosphere taking into account the influence of terrain obstacles, and to carry out its computer implementation and model quality evaluation. The HGDM is the first model of this type developed in Poland because the UMI)SAOS model (Borysiewicz et al., 2000; Gałkowski, 2006) constructed in our country deals with heavy gas dispersion over fiat terrain. The presented Review of the state of knowledge in the area of experimental investigation of heavy gas dispersion in the atmosphere and mathematical modelling of this process fills the gap of this type of work in the Polish language literature. The concept of the HGDM model is based on the works of many researchers published in internationally recognized journals. The HGDM model is innovative in terms of specific solutions proposed by the author. In particular, two innovations are worth noting. The first one concerns modifying the method of parameterization of the influence of terrain obstacles on the dispersion of the heavy gas plume developed by Webber et al. (1995). This method deals with solid obstacles. In the monograph it was extended with porous obstacles such as greenbelts and pipe racks as well. The second new element concerns introducing an alternative description of the process of mixing pollution plume with the surrounding air by applying the method of Briggs et al. (2001) and the method of Nowicki (1976). The method of Briggs et al. (2001) concerning the parameterization of the air mass entrainment through the upper surface of plume both at the stage when the pollution plume has a density greater than the ambient air and at the stage when the plume density becomes comparable with the ambient air density, is a newish method and has been implemented only in the HEGADAS+ model. The method of Nowicki (1976), concerning the parameterization of mixing of the plume with the ambient air through the side surfaces of the plume at the stage when the gas plume has a density comparable with the ambient air density, has not been implemented yet in heavy gas dispersion models. The HGDM model has been applied to show the influence of obstacle height, its width and its degree of permeability on plume dilution. The HGDM model quality evaluation has been carried out following the SMEDIS protocol. It has been the first application of this method in Poland. The HGDM model validation has been developed through a comparison of the simulations outcomes with measurement data from large scale field experiments from MDA and SMEDIS databases. Eventually, intercomparison studies between the three different methods of parameterization of the influence of terrain obstacles on the dispersion of heavy gas clouds implemented in the HGDM model were made. Two of these methods were developed by Cleaver et al. (1995) and Webber et al. (1995) and one is proposed by this author. The BOOT program developed by Hanna et al. (1993) was used in order to conclude about statistically significant differences of the predictions of the model that applied different methods of parametrization of terrain obstacles on the dispersion of heavy gas. The presented methodology of quantitative evaluation of Environmental effects in accidental situations of releases of heavy gases to the atmosphere from the ground level and continuous emission sources has, in the author’s opinion, a potential to be used in practical applications. It cm be applied in the procedures related to Environmental impact assessment, safety studies, emergency planning and land-use planning. Imput data for simulations using the HGDM model are easily obtained; in particular, meteorological data can be supplied from routine measurements conducted in Poland. The calculation time is unquestionably shorter compared to the calculation time needed to carry out simulations applying codes of more complex mathematical models so the calculations in which the HGDM model is used can be done in real time.
Rocznik
Tom
Strony
4--167
Opis fizyczny
Bibliogr. 350 poz., rys., tab.
Twórcy
  • Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska
Bibliografia
  • 1. Abert K., Budziński K., Juda-Rezler K.: Regional air pollution models for Poland. Ecol. Eng. 1994;3:225-244.
  • 2. Anfossi D., Tinarelli G., Trini Castelti S., Nibart M., Ony C., Commanay J.: A new Lagrangian particle model for the simulation of dense gas dispersion Atmos. Environ. 2010;44:753-762. Baines P.G.: Topographic effects in stratified flows. Cambridge University Press; Cambridge: 1998.
  • 3. Bakkum E.: Heavy gas dispersion evaluation protocol. REDIPHEM project report. TNO; Appel-dorn: 1994.
  • 4. Bartnicki J.: An Eulerian model for the atmospheric transport of heavy metals over Europe: Model description and preliminary results. Water, Air and Soil Pollut. 1994;75:227-263.
  • 5. Bartnicki J.: Computing atmospheric transport and deposition of heavy metals over Europe: Country budgets for 1985. Water, Air and Soil Pollut. 1996;92:343-374.
  • 6. Bartzis J.G.: ADREA-HF: a three dimensional finite volume code for vapour cloud dispersion in complex terrain. Report EUR 13580 (EN). EC Joint Research Centre; Ispra: 1991.
  • 7. Bayanov I.M., Gilmullin M.Z., Shagapov V.S.: Calculation of heavy gas spreading over the Earth surface by a three dimensional model. J. Appl. Mech. Tech. Phys. 2003;44:858-865.
  • 8. Beghin P., Hopfinger E.J., Britter R.E.: Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech. 198 1;3 1:407-422.
  • 9. Bellasio R., Tamponi M.: MDPG: a new Eulerian 3D unsteady state model for heavy gas dispersion. Atmos. Environ. 1994;28:1633-1643.
  • 10. Benjamin T.B.: Gravity currents and related phenomena. J. Fluid Mech. 1968;31:209-1248.
  • 11. Betts P.L., Haroutunian V.: Finite element calculations of transient dense gas dispersion. hi: Puttock J.S. (ed.) Stably stratified flows and dense gas dispersion. Oxford University Press, Ciarendon Press; Oxford: 1988,349-384.
  • 12. Brland T.: Release and spreading of dense gases. Turbulence modelling with Kameleon FireFox. MSc Thesis. NTNU; 2011.
  • 13. Billeter L., Fannelop T.K.: Concentration measurements in dense isothermal gas clouds with different starting conditions. Atmos. Environ. 1997;31:755-771.
  • 14. Blackmore D.R., Herman M.N., Woodward J.L.: Heavy gas dispersion models. J. Hazard. Mater. 1982;6:107-128.
  • 15. Blewitt D.N., Yohn J.F., Koopman R.P., Brown T.C.: Conduct of ad hydrous hydrofluoric acid spill experiment. In: Woodward J. (ed.) Proceedings of the international conference on Vapour cloud modelling. November 2-4 1987, Cambridge, Mass. (USA). AICHE; New York: 1987,1-3 8.
  • 16. Borysiewicz M., Gałkowski A., Potempski S.: UMDSAOS: Uniwersalny model dyspersji skażeń w atmosferze i oceny skutków. Raport. Instytut Energii Atomowej; Otwock: 2000.
  • 17. Bradley C.I, Carpenter R.J., Waite P.J., Ramsey C.G., English M.A.: Recent development of a simple box type model for dense vapour cloud dispersion. In: Hartwig S. (ed.) Heavy gas and risk assessment JJD. Reidel Publishing Company; Dordrecht: 1983,77-89.
  • 18. Brambilla S.B, Manca D., Williams MD., Gowardhan A., Brown M.J.: A Shallow water model for dense gas simulation in urban areas. In: Proceedings of the eight AMS symposium on Urban environment. 2-15 January 2009, Phoenix, Arizona (USA), Paper 14.6.
  • 19. Bricard P., Friedel L.: Two-phase jet dispersion. J. Hazard. Mater. 1998;59:287-310.
  • 20. Briggs G.A.: Diffusion estimation for small emissions. Report ATDL-106. Air Res. Atmos. Turb. and Diff. Lab., NOAA; Oak Ridge, Tennesse: 1973.
  • 21. Briggs G.A., Britter KE., Hanna S.R., Havens JA., Robins A.G., Snyder W.H.: Dense gas vertical diffusion over rough surfaces: results of wind tunnel studies. Atmos. Environ. 2001;35:2265-2284.
  • 22. Brighton P.W.M.: Area averaged concentrations height-scales and mass balances. J. Hazard. Mater. 1985;11:189-208.
  • 23. Brighton P.W.M., Prince A.J., Webber D.M.: Determination of cloud area and path from visual and concentration records. J. Hazard. Mater. 1985;11:155-178.
  • 24. Brighton P.W.M., PrinceA.J.: Overall properties of the heavy gas clouds in the Thorney Island phase II trials. J. Hazard. Mater. 1987;16.
  • 25. Brighton P.W.M., Jones S.J., Wren T.: The effects of natural and man-made obstacles on heavy gas dispersion. Part 1: Review of earlier data. SRD/HSE R581 report. Health and Safety Executive; Wigshaw Lane, Cultcheth, Cheschire: 1993.
  • 26. Britter R.E., Simpson J.E.: Experiments on the dynamics of the gravity current head. J. Fluid Mech. 1978;88:223-240.
  • 27. Britter R.E., Linden P.: The motion of the front of gravity current traveling down an incline. J. Fluid Mech. 1980;99:531-554.
  • 28. Britter R.E.: A review of some mixing experiments relevant to dense gas dispersion. hi: Puttock J. S. (ed.) Stably stratified flows and dense gas dispersion. Oxford University Press, Clarendon Press; Oxford: 1988,1-38.
  • 29. Britter R.E., McQuaid J.: Workbook on the dispersion of dense gases. HSE contract research report no. 17/1988. Health and Safety Executive; Sheffield:-1988.
  • 30. Britter R.E., Snyder WH.: Fluid modelling of dense gas dispersion over ramp. J. Hazard. Mater. 1988;18:37-67.
  • 31. Britter R.E.: Experiments on some effects of obstacles on dense gas dispersion. SRI) report 407. UKAEA Safety and Reliability Directorate; Wigshaw Lane, Culcheth, Warrington: 1989a.
  • 32. Britter R.E.: Atmospheric dispersion of dense gases. Ann. Rey. Fluid Mech. 1989b;21:317-344.
  • 33. Britter R.E., Cleaver R.P., Cooper M.G.: Development of simple model for the dispersion of a denser then air vapour clouds over real terrain. MRSEG22 report. British Gas pic, Research and Technology Midlands Research Station; Warf Lane, Solihill, West Midlands: 1991.
  • 34. Britter R.E.: The evaluation of technical models used for major-accident hazard installations. Report EUR 14774. Commission of the European Communities; Brussels: 1991.
  • 35. Britter R.E.: GASTAR user manual. Cambridge Environmental Research Center; Cambridge: 1995a.
  • 36. Britter R.E.: A researcher’s/consultant’s view on advances in source and dispersion modelling. In: Proceedings of the CCPS international conference and workshop on Modelling and mitigation the consequences of accidental releases of hazardous materials. New Orleans, LA, USA, 26-29 Sept 1995, American Institute of Chemical Enginecrs/Center for Chemical Process Safety; New York: 1995b,67-76.
  • 37. Britter R.E.: Recent research on the dispersion of hazardous materials. Report EUR 18198 (EN). Directorate General, Science, Research and Development, Council of European Communities; Brussels: 1998.
  • 38. Britter R.E., Briggs G.A., Hanna S.R., Robins A.G.: Short range vertical dispersion from a ground level source in a turbulent boundary layer. Atmos. Environ. 2003;37:3885-3894.
  • 39. Brown T.C., Cederwall R.T., Chan ST., Ermak D.Ł., Koopman RP., Lamson K.C., McClue JW., Morris L.K.: LNG Falcon series data report: 1987 LNG vapour barrier verification field. Report GRI-89/0138. Gas Research Jristitute; June 1990.
  • 40. Bubbico R., Mazzarotta B., Verdone N.: CM analysis of the dispersion of toxic materials in road tunnel. J. Loss Prev. Proc. Ind. 2014;28;47-59.
  • 41. Builtjes P.J.H.: Research on continuous and instantaneous heavy gas clouds. Final summary report, Report 92-135. TNO; Apeldoorn: 1992.
  • 42. Burman J.: An evaluation of topographical effects on neutral and heavy gas dispersion with a CM model. J. Wind Eng. Ind. Aerod. 1998;74-76:315-325.
  • 43. Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F.: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971;28:181-189.
  • 44. Carpenter R.J., Cleaver RP., Waite P.J., English M.A.: The calibration of a simple model for dense gas dispersion using the Thorney Island phase I trials data. J. Hazard. Mater. 1987; 16:293-31.
  • 45. Carissimo B., Jagger S.F., Daish N.C., Halford A., Selmer-Olsen S., Rikonen K., Perroux J.M., Wurtz J., Bartzis J.G., Duijm N.J., Ham K., Schatzmann M., Hall D.R.: The SMEDIS database and validation exercise. Int. J. Environ. Pollut. 2001;16:614-629.
  • 46. Chan S.T.: FEM3 A finite element model for simulation of heavy gas dispersion and incompressible flow: User’s manual. UCRL-53397, Lawrence Livermore National Laboratory; Livermore, CA: 1983.
  • 47. Chan S.T., Ermak D.L., Morris L.K.: FEM3 model simulations of selected Thorney Island Phase I trials. J. Hazard. Mater. 1987;16:267-292.
  • 48. Chan S.T.: Numerical simulation of LNG vapour dispersion from a fenced storage area. J. Hazard. Mater. 1992;30:195-224.
  • 49. Chang J.C., Hanna S.R.: Air quality model performance evaluation. Meteor. Atmos. Phys. 2004; 87:167-196.
  • 50. Chróściel St.: Obliczanie stanu zanieczyszczenia atmosfery według Wytycznych MAGTOŚ. Ochrona atmosfery. Zeszyt problemowy XIII/85. PZiTS; Warszawa: 1985.
  • 51. Chróściel St., Markiewicz M.: Modelling the atmospheric dispersion of the sulphur dioxide in urban area refereed to the Cracow agglomeration. Env. Prot. Eng. 1985; 11:65-72.
  • 52. Chróściel St., Markiewicz M.: Modelling dispersion of air pollution over the Cracow agglomeration. In: Proceedings of the international conference on Tropical micro-meteorology and air pollution, 15-19 February 1988, New Delhi, India. Indian Institute of Technology; New Delhi: 1988, 135-138.
  • 53. Cleaver R.P., Edwards P.D.: Comparison of an integral model for predicting the dispersion of a turbulent jet in a crossflow with experimental data. J. Loss Prevent. Proc. Ind. 1990;3:91-96.
  • 54. Cleaver R.P., Cooper M.G., Halford A.R.: Further development of a model for dense gas dispersion over real terrain. J. Hazard. Mater. 1995;40:85-108.
  • 55. Cleaver R.P.: Prywatna korespondencja, 2013.
  • 56. Cocchi G.: Modeling instantaneous heavy gas releases with FDS5. Fire Safety Journal, 2015;69:89-98.
  • 57. Coldrick S., Lea C.J., Ivings M.J.: Guide to the LNG model validation database. HSE report. Fire Protection Research Foundation; 2010.
  • 58. Colenbrander G.W: A mathematical model for the transient behaviour of dense gas clouds. In: Proceedings of the third international symposium on Loss prevention and safety promotion in the process industries. 15-19 September 1980, Base, Switzerland.
  • 59. Colenbrander G.W, Puttock J. S.: Maplin Sands experiments 1980: Interpretation and modelling of liquefied spills onto the sea. In: Ooms G, Tennekes H. (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984,277-295.
  • 60. Cormier B.R, Qi R., Yun G.W, Zhang Y., Marinan M. S.: Application of computational fluid dynamics for LNG vapour dispersion modeling: a study of key parameters. J. Loss Prevent. Proc. Ind. 2009;22:332-352.
  • 61. Counihan J., Hunt J.C.R., Jackson P. S.: Wakes behind two-dimensional surface obstacles in turbulent boundary layers. J. Fluid. Mech. 1974;64:529-564.
  • 62. Cowan JR., Britter R.E.: Direct numerical simulation of stable stratified turbulent boundary layer. In: Voke P.R, Kleisetr L., Chollet J-P. (eds) Direct and large eddy simulation I. Kluwer Academic Publishers; Dordrecht: 1994,157-166.
  • 63. Cox R.A., Roe D.R.: A model of the dispersion of dense vapour clouds. In: Proceedings of the second international symposium on Loss prevention and safety promotion in the chemical industries. 6-9 September 1977, Frankfurt, Germany; 1977, 359.
  • 64. Cox R., Carpenter R.J.: Further developments of a dense vapour cloud dispersion model for hazard analysis. In: Hartwig S. (ed.) Heavy gas dispersion. Reidel D. Publishing Company; Dordrecht: 1980,55-87.
  • 65. Crabol B., Roux A., Lhomme V.: Interpretation of the Thorney Island phase I trial with the box model CIGALE 2. J. Hazard. Mater. 1987;16:201-214.
  • 66. Crapper P.F., Linden P.F.: The structure of turbulent density interfaces. J. Fluid. Mech. 1974;65:45-63.
  • 67. Cude A.L.: Dispersion of gases vented to atmosphere from relief valves. The Chemical Engineer, 1974; 629-636.
  • 68. Daish N.C., Britter R.E., Linden P.F., Jagger S.F., Carissimo B.: SMEDIS: scientific model evaluation of dense gas dispersion models. Int. J. Environ. Pollut. 2000;14:39-5 1.
  • 69. Davies M.E., Singh S.: Thorney Island: its geography and meteorology. J. Hazard. Mater. 1985;11:91-124.
  • 70. Davies J.K.W., Hall D.J.: An analysis of some replicated wind tunnel experiments on instantaneously released heavy gas clouds dispersing over solid and crenellated fences. J. Hazard. Mater. 1996;49:311-328.
  • 71. Deaves D.M.: Application of advanced turbulence models in determining the structure and dispersion of heavy gas clouds. In: Ooms G., Tennekes H. (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984,93-103.
  • 72. Deaves D.M.: Three-dimensional model predictions for the upwind building trial of Thorney Island phase II. J. Hazard Mater. 1985;11:341-346.
  • 73. Deaves D.M.: Development and application of heavy gas dispersion models of varying complexity. J. Hazard. Mater. 1987;16:427-438.
  • 74. DeVaull G.E., King J.A., Latzy R.J., Fontaine D.J.: Understanding atmosphere dispersion of account releases. Center foe Chemical Proces Safety, American Institute Of Chemical Engineers, New York: 1995.
  • 75. Ditali S., Colombi M., Moreschini G.,.Senni S.J.: Consequence analysis in LPG installation using an integrated computer package. J. Hazard. Mater. 2000;71:159.
  • 76. Donaldson C., Du P.: Atmospheric turbulence and the dispersion of atmospheric pollutants. In: Hangen D.A. (ed.)AMS workshop on Micrometeorology. Science Press; Boston: 1973,313-390.
  • 77. Donat J., Schatzmann M.: Wind tunnel experiments of single phase heavy gas jets released under various angles into turbulent cross flows. J. Wind Eng. Ind. Aerodyn. 1999;83:361-370. Duijm N.J. (ed.) Research on the dispersion of two-phase flashing releases. FLADIS final report. R 95; TNO, Apeldoorn: 1995a.
  • 78. Duijm N.J.: Dispersion of dense gas and flashing releases. In: Proceedings of the CCPS international conference and workshop on Modelling and mitigating the consequences of accidental releases of hazardous materials. New Orleans, LA, USA, 26-29 Sept 1995,American Institute of Chemical Engineers/Center for Chemical Process Safety; New York: 1995b.
  • 79.Duijm N.J., Ott S., Nielsen M.: An evaluation of validation procedures and test parameters for dense gas dispersion models. J. Loss Prev. Proc. Ind. 1996;9:323-338.
  • 80. Duijm N.J., Carissimo B., Mercer A., Bartholome C., Giesbrecht H.: Development and test of an evaluation protocol for heavy gas dispersion models. J. Hazard. Mater. 1997;56:273-285. Dyer A.J. A Review of flux profile relationships. Bound. Layer Meteor. 1974;7:363-372.
  • 81. Eidsvik K.J.: A model for heavy gas dispersion in the atmosphere. Atmos. Environ. 1980;14:769-777.
  • 82. Ellison T.H., Tumer J.S.: Turbulent entrainment in stratified flows. J. Fluid Mech. 1959;6:423-448.
  • 83. Elsner J.W: Turbulencja przepływów. PWN, Warszawa: 1987.
  • 84. England WG., Teuscher L.H., Hauser L.E., Freedman B.E.: Atmospheric dispersion of a liquefied natural gas vapour cloud using SIGMET, a three dimensional hydrodynamic computer model. In: Crowe C.T., Grasshandler W.L. (eds) Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute conference, Washington State University, Pullman Washington, June 26-28, 1978. Stanford University Press; Standford, CA: 1978;4-20.
  • 85. Epstain M., Fauske H.K., Hauser G.H.: A model of dilution of a forced two phase chemical plume in a horizontal wind. J. Loss Prevent. Proc. Ind. 1990;3:280-290.
  • 86. Ermak D.L., Chan S.T., Morgan D.L., Morris L.K.: A comparison of dense gas dispersion model simulations with Burro Series LNG test results. J. Hazard. Mater. 1982;6:129-160.
  • 87. Ermak D.L.: Dense gas dispersion advection-diffusion model. In: Proceedings of the JANNAF Safety and Environmental protection subcommittee meeting in Monterey, UCRL-JC-109697. Lawrence Livermore National Laboratory; Livermore, CA: 1992.
  • 88. Fay J.A., Ranek D.: Comparison of experiments on dense gas clouds dispersion. Atmos. Environ. 1983;17:239-248.
  • 89. Fay J.A., Zemba S.G.: Dispersion of initially compact dense gas clouds. Atmos. Environ. 1985;19:1257-1261.
  • 90. Fay J.A., Zemba S.G.: Integral model of dense gas plume dispersion. Atmos. Environ. 1986;20:1347-1354.
  • 91. Fernando H.J.: Turbulent mixing in stratified fluids. Ann. Rey. Fluid Mech. 1991;23:455-493. 92.
  • 92. Fiates J., Santos R.R.C., Neto F.F., Francesconi A.Z., Simoes V., Vianna S.S.V.: An alternative CFD tool for gas dispersion modeling of heavy gas. J. Loss Prev. Proc. Ind. 2016:44:583-593. 93.
  • 93. Flacher A.: Experimentelle Untersuchung des Ausbreitung einer Schwergaswolke auf geneigtem Grund, Diploma Thesis, Institut fur Fluiddynamik, ETH Zurich; Zurich: 1994.
  • 94. Fox D.G.: Uncertainty in air quality modeling. Bull. Ani. Met. Soc. 1984;65:27-3.
  • 95. Fackrell J.E.: Parameters characterising dispersion in the near wake of buildings. J. Wind Eng. Ind. Aerod. 1984;16:97-118.
  • 96. Funada T., Joseph D.: Viscous potential flow analysis of Kelvin-Helmholtz instability in a channel. J. Fluid Mech. 2001;445:263-283.
  • 97. Flowe A.C., Kumar A.: Analysis of velocity fields and dispersive cavity parameters a function of building andth to building height ratio using a 3-D computer model for squat buildings. J. Wind Eng. Ind. Aerod. 2000;86:87-122.
  • 98. Gaffen D.J., Benocci C., Olivari D.: Numerical modelling of buoyancy dominated dispersal using a Lagrangian approaeh. Atmos. Environ., 1987;21:1285-1293.
  • 99. Gałkowski A.: A unified model for pollutant dispersion in atmosphere and for consequence assessment. In: Borysiewicz M.J. (ed.) Models and techniques for health and Environmental hazard assessment and management. Institute of Atomic Energy; Otwock: 2006, 95-113.
  • 100. Gavelli F., Bullister E., Kytomaa H.: Application of CFD to LNG spills into geometrically complex Environments. J. Hazard. Mater. 2008;159:158-168.
  • 101. Gavelli F., Chernovsky M.K., Bullister E., Kytomaa H.K.: Modelling of LNG spills into trenches. J. Hazard. Mater. 2010;180:332-339.
  • 102. Golder D.: Relations among stability parameters in the surface layer. Bound. Layer Meteor. 1972;3:47-58.
  • 103. Goldwire H.C., Rodean H.C., Cederwall R.T., Kansa E.J., Koopman R.P., McClure J.W., McRae T.G., Morris L.K., Kamppinen L., Kiefer R.D.: Coyote series data report, LLNL/NWC, 1981 LNG spill tests dispersion, vapor burn and rapid phase transition. Vol. I. Vol. II. UCJD-19953. Lawrence Livermore National Laboratories; Livermore, CA: 1983.
  • 104. Goldwire H.C., McRae T.G., Johnson GW., Hippie D.L., Koopman R.P., McClure J.W., Morris L.K., Cederwall R.T.: Desert Tortoise Series data report: 1983 Pressurised ammonia spills. UCID-20562. Lawrence Livermore National Laboratory; Livermore, CA: 1985.
  • 105. Gopalakrishnan S.G., Sharan M.: A Lagrangian particle model for marginally heavy gas dispersion. Atmos. Environ. 1997;31:3369-3382.
  • 106. Gröbelbauer H.P.: Experimental study on the dispersion of instantaneously released dense gas clouds. Diss. ETH no. 10973, Swiss Federal Institute of Technology; Zurich: 1995.
  • 107. Hall D.J., Waters R.A., Marsland G.W, Upton S.L., Emmott M.A.: Repeat variability in instantaneous released heavy gas clouds dispersing over fences. Some wind tunnel model experiments. Warren Spring Laboratories; Stevenage, Herdfordshire: 1991.
  • 108. Hall R.C. (ed.): Evaluation of model uncertainty (EMU) - CFD modelling of near-field atmospheric dispersion, Project EMU Final Report to the European Commission (Data CI) also available with report). Report WSA]AM50171R7. WS Atkins; Woodcote Grove, Ashley Road, Epson, Surrey: 1997.
  • 109. Hall D.J., Walker S.: Scaling rules for reduced-scale fields releases of hydrogen fluoride. J. Hazard. Mater. 1997;54,89-111.
  • 110. Hankin R.K.S.: Heavy gas dispersion over complex terrain, PhD thesis, Trinity College, Cambridge University; Cambridge: 1997.
  • 111. Hankin R.K.S., Britter R.E.: TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion, Part 1: Mathematical basis and physical assumptions. J. Hazard. Mater. 1999a;A66:211-226.
  • 112. Hankin, R.K.S., Britter R.E.: TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part II: Outline and validation of the computational scheme. J. Hazard. Mater. 1999b;66:211-237.
  • 113. Hankin, R.K.S., Britter R.E.: TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part III: Experimental validation (Thorney Island). J. Hazard. Mater. 1999c;66:239-261.
  • 114. Hankin R.K.S.: Heavy gas dispersion: integral models and shallow layer models. J. Hazard. Mater. 2003;102:1-10.
  • 115. Hankin R.K.S.: Major hazard risk assessment over non-at terrain. Part 1: continuous releases. Atmos. Environ. 2004a;38:695-705.
  • 116. Hankin R.K.S.: Major hazard risk assessment over non4at terrain. Part II: instantaneous releases. Atmos. Environ. 2004b;38:707-714.
  • 117. Hanna S.R.: Air quality model evaluation and uncertainty. J. Air Pollut. Control. Assoc. 1988;38:406-412.
  • 118. Hanna S.R.: Confidence limits for air quality model evaluations as estimated by bootstrap and jacknife resampling methods. Atmos. Environ. 1989;22:1385-1398.
  • 119. Hanna S.R., Strimaitis D.G.: Workbook of the test cases for vapour cloud models. Center for Chemical Process Safety, Institute of Chemical Engineers; New York: 1989.
  • 120. Hanna S.R., Drivas P.J.: Guidelines for use of vapour cloud dispersion models. Center for Chemical Process Safety, Institute of Chemical Engineers; New York: 1996.
  • 121. Hanna S.R., Strimaitis D.G., Chang J.C.: Hazard response modeling uncertainty. Evaluation of commonly used hazardous gas dispersion models. Final report. Sigma Research; Westford, MA: 1991a.
  • 122. Hanna S.R., Strimaitis D.G., Chang J.C.: Hazard response modeling uncertainty. Vol. 1: User’s guide to software for evaluating gas dispersion models. Technical report F08653-89-C-0136, Sigma Research Corporation; Westford MA: 1991b.
  • 123. Hanna S.R., Strimaitis D.G., Chang J.C.: Evaluation of fourteen hazardous gas models with ammonia and hydrogen fluoride field data. J. Hazard. Mater. 1991c;26:127-158.
  • 124. Hanna S.R., Chatwin P., Chikhliwala E., Londergan R., Spicer T., Weil J.: Results from the model evaluation panel. J. Plant Oper. Prog. 1992;11:2-5.
  • 125. Hanna S.R., Chang J.C., Strimaitis D.G.: Hazardous gas model evaluation with field observations. Atmos. Environ. 1993;27A(15):2265-2285.
  • 126. Hanna S.R., Steinberg K.W.: Overview of Petroleum Environmental Research Forum (PERF) dense gas dispersion modelling project. Atmos. Environ. 2001;35:2223-2229.
  • 127. Hanna S.R., Britter R.E., Franzese P.: The effects of roughness obstacles on the flow and dispersion at industrial and urban sites. AICHE/CCPS; 3Park Avenue, New York: 2002.
  • 128. Hanna S.R., Hansen O.R., Dharmavaran S.: FLACS air quality CFD model performance evaluation with Kit Fox, MUST, Praire Grass, and EMU observations. Atmos. Environ. 2004;38:4675-4687.
  • 129. Hanna S.R. Dharmavaram S., Zang S., Sykes I., Witlox H., Khajehnajafi S., Koslan K.: Comparison of six andely-used dense gas dispersion models for three resent chlorine rail car accidents. Proc. Safety Prog. 2008;27:248-259.
  • 130. Hanna S.R., Hansen O.R., Ichard M., Strimatis D.: CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmos. Environ. 2009;43:262-270.
  • 131. Hanna S., Britter R., Argenta E., Chang J.: The Jack Rabbit chlorine release experiments: Implications of dense gas removal from a depression and downwind concentrations J. Hazard. Mater. 2012;213-214:406-412.
  • 132. Havens J.R., Spicer T.O.: Development of an atmospheric dispersion model heavier that air gas mixtures. Vol. 3 DEGADIS user manual. Arkansas University, Fayeteville Department of Chemical Engineering;1985.
  • 133. Havens J., Walker H., Spicer T.0.: Wind tunnel study of air entrainment into two dimensional dense gas plumes at the Chemical Hazards Research Center. Atmos. Environ. 2001;35:2305-2317.
  • 134. Härtel C., Michand M., Stein C.: Direct Numerical Simulation of heavy gas dispersion in plane channel. In: Gavrilakis S., Machiels L., Monkewitz P.A. (eds) Advances in turbulence VI. Kluwer Academic Publishers; Dordrecht: 1996,585-588.
  • 135. Härtel C., Meiburg E., Necker F.: Analysis and direct numerical simulation of the flow at a gravity current head. Part 1: Flow topology and front speed for slip and no supboundaries. J. Fluid Mech. 2000;418:189-252.
  • 136. Heinrich M., Scherwinsky R.: Research on propane releases under realistic conditions. Determination of gas concentrations considering obstacles, T(V report 123U1000780. Technischer Überwachung Verein; Germany: 1990.
  • 137. Hill M.D. In: Desmer G. (ed.): Reliability of radioactive transfer models. Springer Science and Busines Media; Dordrecht: 1988,15-21.
  • 138. Holnicki P. Kałuszko A., Żochowski A.: A multilayer computer model for air quality forecasting in urban/regional scale. Control and Cybemetics, 1993;22:5-28.
  • 139. Holnicki-Szulc P.: Modele propagacji zanieczyszczeń atmosferycznych w zastosowaniach do kontroli i sterowania jakością powietrza. Akademicka Oficyna Wydawnicza EXIT; Warszawa: 2006.
  • 140. Hoot T.G., Meroney R.N., Peterka J.A.: Wind tunnel tests of negatively buoyant plumes. Technical report, Colorado State University; Fort Collins, CO: 1973.
  • 141. Hosker R.P.: Flow and diffusion near obstacles. In: Randerson. D. (od.) Atmospheric science and power production. Report DOE/TIC-27601. United States Department of Energy; 1984,241-287.
  • 142. Hunt J.C.R., Rottman J.W., Britter R.E.: Some physical process involved in the dispersion of dense gases. Tu: Ooms G., Tenekes H. (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984,361-395.
  • 143. Huppert RE., Simpson J.E.: The slumping of gravity currents. J. Fluid Mech. 1980;99:785-799. Huppert H.: Gravity currents: a personal perspective. J. Fluid. Mech. 2006;554:299-322, Idelchik I.E.: Handbook of hydraulic resistance. Hemisphere Publishing; New York: 1986.
  • 144. Ivings M.J., Jagger S.F., Lea C.J., Webber D.M.: Evaluating vapour dispersion models for safety analysis of facilities research project. HSE report. Fire Protection Research Foundation: 2007.
  • 145. Ivings M.J., Lea C.J., Webber D.M., Jagger S.F., Coldrick S.: A protocol for the evaluations of LNG vapor dispersion models. J. Loss Prev. Proc. Ind. 2013; 26:157-163.
  • 146. Iwanek J.: Metody obliczania stanu zanieczyszczenia powietrza. Raport. Instytut Ochrony Środowiska, Warszawa: 1998.
  • 147. Jagger S.F.: Development of CRUNCH - a dispersion model for continuous releases of a denser than air vapour into the atmosphere. Report UK AEA/SRD R229, Sheffield: 1983.
  • 148. Jensen N.O., Mikkelsen T.: Entrainment through the top of heavy gas cloud, numerical treatment. In: Air pollution modelling and its application III. Wispelaere C. De. (ed.) Plenum Prosa; Now York: 1984,343-350.
  • 149. Jóźwiak J., Podgórski J.: Statystyka od podstaw. Polskie Wydawnictwo Ekonomiczne; Warszawa: 2000.
  • 150. Juda J., Chróściel St.: Ochrona powietrza atmosferycznego. Wydawnictwa Politechniki Warszawskiej, Warszawa: 1980.
  • 151. Juda K.: Modelling of the air pollution over Cracow area. Atmos. Environ. 1986;20:2440-2558. Juda Rezler K.: Uniwersalna funkcja celu dla zintegrowanych modeli oceny wpływu zanieczyszczeń powietrza na środowisko. Oficyna Wydawnicza Politechniki Warszawskiej; Warszawa: 2004.
  • 152. Kaiser G.D., Walker B.C.: Releases of ad hydrous ammonia from pressurised containers - the importance of danser than air mixtures. Atmos. Environ. 1978; 12:2289-2300.
  • 153. Kamiński J.W., Plummer D.A., McConnel L.N., Strużewska J., Łobocki L.: First application of MC2-AQ to multiscale air quality modelling over Europe. Physics and Chemistry of the Earth, Parts AlB/C. 2002;35:1517-1524.
  • 154. Kantha L.H., Phillips O.M., Azad R. S.: On turbulent entrainment at stable density interface. J. Fluid Mech. 1977;79:753-768.
  • 155. Kato H., Phillips O.M.: On the penetration of the turbulent layer into a stratified fluid. J. Fluid Mech. 1969;37:643-665.
  • 156. Keulegan G.H.: Twelve progress report on model laws for density currents: The motion of saline fronts in still water. Nat. Bur. Stand. Rep. 5831, 1958.
  • 157. Khan F.I., Abassi S.A.: Modelling and simulation of heavy gas dispersion on the basis of modifications in plume path theory. J. Hazard. Mater. 2000;80:15-30.
  • 158. Koopman R.P., Baker R.T., Cederwall R.T., Goldwire H.C., Hogan W.J., Kamppinen L.M., Kiefer R.D., McClure J.W., McRae T.G., Morgan D.L., Morris M.K., Span M.W., Lind C.D.: Burro series data report LLNL/NWC, LNG Spill Tests, UTCD 19075. Lawrence Livermore National Laboratonies; Livermore, CA: 1982a.
  • 159. Koopman R.P., Cederwali R.T., Ermak D.L., Goldwire H.C., Hogan W.J., McClure J.W., McRae T.G., Morgan D.L., Rodean H.C., Shinn J.H.: Analysis of Burro series 40 m3 LNG spill experiments. J. Hazard. Mater. 1982b;6:43-83.
  • 160. Koopman R.P., McRae T.G., Goldwire H.C., Ermak D.L., Kansa E.J.: Results of recent large scale NH3 and N204 dispersion experiments. In: Hartwig S. (ed.) Heavy gas and risk assessment III. D. Reidel Publishing; Dordrecht: 1985,137-156.
  • 161. Koopman R.P., Ermak D.L., Chan T.: A Review of recent field tests and mathematical modeling of atmospheric dispersion of large spills of denser then air gases. Atmos. Environ. 1989;23:731-745.
  • 162. Koopman RP., Ermak D.L.: Lessons learned from LNG safety research. J. Hazard. Mater. 2007;140:412-428.
  • 163. Kothari KM., Meroney R.N., Neff D.E.: LNG plume interaction with surface obstacles. Report CER81-82KMK-RNM-DEN22. Colorado State University; Fort Collins: 1981.
  • 164. Kovalets IV., Maderich V.S.: Numerical simulation of an interaction of the heavy gas cloud with the atmospheric boundary layer. Environ. Fluid Mech. 2006;6:313-340.
  • 165. König G.: Windkanalmodellierung der Ausbreitung störfallartig freigesetzter Gase Schwerer als Luft. Hamburg Universität; Hamburg: 1987.
  • 166. Kranenburg C.: Jiiternal fronts in two-layer Flow. ASCE J. Hydr. Div. 1978;104:1449-1453. Krogstad P.A., Petersen R.M.: Windtunnel modeling of a release of a heavy gas near a building. Atmos. Environ. 1986;20:867-878.
  • 167. Kukkonen J., Nikmo J.: Modelling heavy gas cloud transport in sloping terrain. J. Hazard. Mater. 1992;31;155-176.
  • 168. Kukkonen J., Nikimo J., Riikonen K.: An improved version of the consequence analysis model for chemical emergencies, ESCAPE. Atmos. Environ. 2017;150;198-209.
  • 169. Lamb V.R., Britter R.E.: Shallow flow over an isolated obstacie. J. Fluid Mech. 1984;147:29l-313.
  • 170. Lee Ch., Kim B.G., Ko S.Y: A new Lagrangian stochastic model for the gravity-slumping /spreading motion of dense gas. Atmos. Environ. 2007;41:7874-7886.
  • 171. Lewellen W.S.: Use of invariant modelling. In: Frost W., Moulden T.H. (eds) Handbook of turbulence. Plenum Press; New York: 1972,237-280.
  • 172. Li Y., Chen D., Cheng S., Xu T., Huang Q., Guo X., Ma X, Yang N., Liu X.: An improved model for heavy dispersion using time-varying wind data: mathematical basis, physical assumptions, and case study. J. Loss Prev. Proc. Ind. 2015;36:2-29
  • 173. Lin Y.J., Schrőff G.H.: Chlorine related accidental releases and their dispersion. International conference on Modelling and mitigating the consequences of accidental releases of hazardous materials,AICHE: 1991,169-182.
  • 174. Linden P.: Gravity currents - Theory and laboratory experiments. In: Chassignet E., Cenedese C., Verron J. (eds), Buoyancy driven flows. Cambridge University Press; Cambridge:2013,1-35.
  • 175. Liu M.K., Durran D.: On the prescription on the vertical dispersion coefficient over complex ter rain. In: Proceedings of the joint conference on Application of air pollution meteorology, Nov. 29-Dec. 2 1977, Salt Lake City, Utah, American Meteorological Society, Boston: 1977,172-177.
  • 176. Lofquist K.: Flow and stress near an interface between stratified liquids. Phys. Fluids. 1960;3:158-175.
  • 177. Luketa-Hanlin A.: A Review of large-scale LNG spills; experiments and modeling. J. Hazard. Mater. 2006;132:119-140.
  • 178. Luketa-Hanlin A., Koopman RP., Ermak D.L.: On the application of computational fluid dynamics codes for liquefied natural gas dispersion. J. Hazard. Mater. 2007; 140:504-517.
  • 179. Łobocki L.: Wskazówki metodyczne dotyczące modelowania matematycznego w systemie zarządzania jakością powietrza. Ministerstwo Środowiska, Główny Inspektorat Ochrony Środowiska; Warszawa: 2003.
  • 180. Mack A., Spruijt M.P.N.: CFD dispersion investigation of CO2 worst case scenarios including terrain and release effects. Energy Procedia 2014;51:363-372.
  • 181. Mack A., Spruijt M.P.N.: Validation of Open Foam for heavy gas dispersion applications. J. Hazard. Mater. 2013;262:504-516.
  • 182. Madany A., Bartochowska M.: Przegląd polskich modeli rozprzestrzeniania się zanieczyszczeń atmosferycznych. Prace Naukowe Politechniki Warszawskiej, Inż. Środ.; 1995;73-110.
  • 183. Mannan S. (ed.): Lees’ Loss prevention in the process industries. Hazard identification, assessment and control. Elsevier; Amsterdam: 2012.
  • 184. Markiewicz M.T.: Przegląd modeli rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym. Prace Naukowe Politechniki Warszawskiej, Inż. Środ. 1996a;21:35-63.
  • 185. Markiewicz M.T.: The Gaussian air pollution dispersion model with variability of the input parameters taken into account. Part 1: Formulation of the model. Environ. Prot. Eng. 1996b; 10:123-132.
  • 186. Markiewicz M.T.: The Gaussian air pollution dispersion model with variability of the input parameters taken into account. Part II: Verification of the model. Environ. Prot. Bug. 1996c;10:133-141.
  • 187. Markiewicz M.T.: Podstawy modelowania rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym. Oficyna Wydawnicza Politechniki Warszawskiej; Warszawa: 2004.
  • 188. Markiewicz M.T.: Modeling of heavy gas dispersion in Poland. In: Pawłowski L., Dudzińska M.R., Pawłowski A. (eds): Environniental Engineering, Taylor and Francis; London: 2007,371-374.
  • 189. Markiewicz M.T.: Modeling of the heavy gas dispersion over complex and obstructed terrain. Environ. Prot. Eng. 2010;33:75-86.
  • 190. Markiewicz M.T.: A Review of mathematical models for atmospheric dispersion of heavy gases. Part 1: A classification of models. Ecol. Chem. Eng. S. 2012;19:297-314.
  • 191. Markiewicz M.T.: A Review of models for atmospheric dispersion of heavy gases. Part II: Model quality evaluation. Ecol. Chem. Eng. S. 2013;20:763-782.
  • 192. Markiewicz M.T.: Model evaluation report. Manuskrypt niepublikowany. Warszawa: 2016. Marsegan C., Busini V., Rota R.: Influence of active mitigation barriers on LNG dispersion. J. Loss Prev. Proc. Ind. 2016;44:380-389.
  • 193. McQuaid J.: Some experiments on the structure of stably stratified flows. Technical report SMRE, Technical paper P21. SMRE: 1976.
  • 194. McQuaid J.: Observations on the current status of field experimentation on heavy gas dispersion. Tu: Ooms G., Tennekes H. (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984a,241-268.
  • 195. McQuaid J.: Large scale experiments on the dispersion of heavy gas clouds. In: Ooms G., Tennekes H. (eds): Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984b,129-138.
  • 196. McQuaid J., Roebuck B.: Large scale field trials on dense vapour dispersion. Report EUR 10029 (BN). Commission of the European Comminities; Brussels: 1985.
  • 197. McQuaid J.: Heavy gas dispersion trials at Thorney Island. J. Hazard. Mater. 1985; 11:21.
  • 198. McQuaid J.: Design of Thorney Island continuous release trials. J. Hazard. Mater. 1987;16:1-8. McRae T.G., Cardewall R.T., Ermak D.L. Goldwire H.C., Inpple DL., Johnson G.W, Koop- mm R.P., McClure J.W., Morris L.K.: Eagle series data report: 1983 nitrogen tetroxide spills. UCD-20063. Lawrence Livermore National Laboratory; Livermore, CA: 1984.
  • 199. Mercer A., Davies J.K.W: An analysis of the turbulence records from the Thorney Island continuous release trials. J. Hazard. Mater. 1987;16:21-42.
  • 200. Mercer A., Barholome C., Carissimo B., Giesbrecht H.: CEC Model Evaluation Group. Protocol for model evaluation. Published by CEC DG XII; Brussels: 1994.
  • 201. Mercer A., Bartholome C., Carissimo B., Duijm N., Giesbrecht H.: CEC Model Evaluation Group Heavy Gas Dispersion Expert Group- Protocol. Dixectorate of Research, Science and Development; Brussels: 1996.
  • 202. Meroney R.N.: Transient characteristics of dense gas dispersion. Part 1: A depth-averaged numerical model. J. Hazard. Mater. 1984a;9:139-157.
  • 203. Meroney R.N.: Transient characteristics of dense gas dispersion. Part II: Numerical experiments on dense cloud physics. J. Hazard. Mater. 1984b;9:159-170.
  • 204. Meroney R.N.: Guidelines for fluid modelling of dense gas cloud dispersion. J. Hazard. Mater. 1987;17:23-46.
  • 205. Meroney R.N.: Dilution of hazardous gas cloud concentrations using vapour barriers and water spray curtains. In: Proceedings of the secondAsia-Pacific ymposium on Wind engineering, Beijng, China 26-29 June 1988.
  • 206. Meroney R.N., Neff D. E. Shin S.E., Steidle T.C., Tan T.Z., Wu G.: Analysis of vapour barrier experiments to evaluate their effectiveness as a means to mitigate HF cloud concentrations. Final report CER88-89RNM-DEN-SHS-TS-TZT-GW-1, Colorado State University; Fort Collins, CO: 1988.
  • 207. Meroney R.N.: Bluff body aerodynamics influence on transport and diffusion. J. Wind Eng. Ind. Aerod. 1990;33:21-33.
  • 208. Meroney R.N.: Bluff body aerodynamics influence on transport and diffusion of hazardous gases: shelterbelts and vapour barrier fences. J. Wind Eng. Ind. Aerod.. 1993;49:141-156.
  • 209. Meroney R.N., LohmayerA.: Prediction of propane cloud dispersion by wind tunnel data calibrated box model. J. Hazard. Mater. 1994;8:205-221.
  • 210. Meroney R.N.: CM modeling of water spray interaction with dense gas plumes. Atmos. Environ. 2012; 54:706-713.
  • 211. Meroney R.N.: CM modeling of dense gas cloud dispersion over irregular terrain. J. Wind Eng. Ind. Aerod. 2012;104-106:500-508.
  • 212. Meroney R.N.: Prywatna korespondencja, 2013.
  • 213. Meroney R.N.: Ten questions concerning hybrid computational/physical model simulation of wind flow in the build Environment. Building and Environ. 2016;96:12-21.
  • 214. Mitosek M.: Mechanika płynów w inżynierii i ochronie środowiska. Oficyna Wydawnicza Politechniki Warszawskiej; Warszawa: 2014.
  • 215. Middleton G.V.: Experiments on density and turbidity currents. I. Motion of the head. Canadian J. Earth Sciences. 1966;3:523-546.
  • 216. Mortarini L., Carlino G., Tinarelli G., Mauri G., Trini Castelli S., Anfossi D.: Development of the microscale particle dispersion model MicroSpray for the simulation of two-phase releases. In: Proceedings of the 14 th conference on the Harmonization within atmospheric dispersion modeling regulatory purposes, 2-6 October 2011, Kos Greece, 704-707.
  • 217. Mohan M., Panwar T. S., Singh P.: Development of dense gas dispersion model for emergency preparedness. Atmos. Environ. 1995;29:2075-2087.
  • 218. Moodie T.B.: Gravity currents. J. of Computational and Applied Mathematics. 2002;144:49-83.
  • 219. Morgan D.L., Morris L.K., Ermak D.L.: SLAB -A time dependent computer model for the dispersion of heavy gases released in the atmosphere. UCRL-53383, Lawrence Livermore National Laboratory; Livermore, CA: 1983.
  • 220. Murakami S., Mochida A., Tominaga Y: Numerical simulation of turbulent diffusion in cities. In: Cermak J.E., Davenport A.G., Plate E.J., Viegas D.X. (eds) Wind climate in cities. Kluwer Academic Publishers; Dordrecht: 1995;681-702.
  • 221. Nielesen M., Jensen N.O.: Research on continuous and instantaneous gas clouds. J. Hazard. Mater. 1989;21:101-104.
  • 222. Nielsen M., Jensen N.O.: Continuous releases, dense gas experiments with obstacles. Final report on Project BA.X2. Report 2923, Riso National Laboratory; Roskilde: 1991.
  • 223. Nielsen M., Heinrich M., Scherwinsky R.: Research on continuous and instantaneous gas clouds. Part H. J. Hazard. Mater. 1991;26:219-224.
  • 224. Nielsen M.: Comment on: A model of the motion of a heavy gas cloud released on a uniform slope. J. Hazard. Mater. 1994;48:251-258.
  • 225. Nielsen M., Bengtsson R., Jones C., Nyren K., Ott S., Ride D.: Design of the FLADIS field experiments with dispersion of liquefied ammonia. Report R 755. Riso National Laboratory; Roskilde: 1994.
  • 226. Nielsen M., Ott S.: A collection of data from dense gas experiments. Report R 845. Riso National Laboratory; Roskilde: 1995.
  • 227. Nielsen M.: Surface concentrations in the FLADIS field. experinients. Report R 995. Riso National Laboratory; Roskilde: 1996.
  • 228. Nielsen M., Ott S.: Fladis field experiments. Final report R 898. Riso National Laboratory; Roskilde:1996.
  • 229. Nielsen M., Ott S., Jorgensen H.E., Bengtsson R., Nyren K., Winter S., Ride D., Jones C.: Field experiment with dispersion of pressure liquefied ammonia. J. Hazard Mater. 1997;56:59-105.
  • 230. Nielsen M.: Dense gas dispersion in the atmosphere. PhD thesis. Riso National Laboratory; Roskilde: 1998.
  • 231. Nielsen M., Ott S.: Heat transfer in large scale heavy gas dispersion. J. Hazard. Mater. 1999A67:41-58.
  • 232. Nielsen M.: Prywatna korespondencja, 2013.
  • 233. Nowicki M.: Uniwersalne współczynniki dyfuzji atmosfery. Wydawnictwa Politechniki Warszawskiej; Warszawa 1976.
  • 234. Nowicki M.: Parametry empiryczne w modelach dyfuzji zanieczyszczeń w atmosferze. Ochrona powietrza. Zeszyt problemowy nr X84-85. PZiTS; Warszawa: 1984-1985.
  • 235. Ohba R., Kouchi A., Hara T., Vieillard V., Nedelka D.: Validation of heavy and light gas dispersion models for the safety analysis of LNG tank. J. Loss Prev. Proc. Ind. 2005;17:325-337.
  • 236.Ooms G., Mahiue A.P., Zelis F.: The plume path of vent gases heavier then air. In: Birschman C.H. (ed.) Loss prevention and safety promotion in the process industries. Elsevier; Amsterdam: 1974,211-219.
  • 237. Ooms G., Dijum N.J.: Dispersion of stack plume heavier than air. In: Ooms G., Tennekes H. (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984,1-21.
  • 238. Ott S., Nielsen M.: Shallow layer modelling of dense gas clouds. Report R 90, Riso National Labolatory; Roskilde: 1996.
  • 239. Pattison M.J., Martini R., Benarjee S., Hewitt G.F.: Modelling of dispersion of two-phase releases. Part 1: Conservation equations and closure relationships. Translchem. 1998;76,31-40.
  • 240. Paulson C.A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. 1970;9:857.
  • 241. Peters W.D., Cogswell S.R., Venart J.E.S.: Dense gas simulation Flows over rough surface. J. Hazard. Mater. 1996;46:215-223.
  • 242. Petersen K.E.: The EU model evaluation group. J. Hazard. Mater. 1999;65:37-41.
  • 243. Petersen K.E.: European model evaluation activity. J. Loss Prev. Proc. Ind. 1994;7:130-132. Petersen R.L.: Application of wind tunnel modeling for accidental releases. Air and Waste Management Association’s 90th annual meeting and exhibition, June 8-13, 1997, Toronto, Ontario, Canada: 97-A1092.
  • 244. Perdikaris G.A., Mayinger F.: Numerical simulation of heavy gas cloud dispersion within the topographically complex terrain. J. Loss. Prev. Proc. Ind. 1994;7:391-396.
  • 245. Pereira J.C.F., Chen X.Q.: Numerical calculations of unsteady heavy gas dispersion. J. Hazard. Mater. 1995;46:253-272.
  • 246. Picknett R.G.: Dispersion of dense gas puffs released in the atmosphere at ground level. Atmos. Environ. 1981;15:509-525.
  • 247. Pontiggia M., Landucci G., Busini V., Derudi M.,Alba M., Scaioni M., Bonvicini M. Cozzani V., Rota R.: CFD model simulation of LPG dispersion in urban area. Atmos. Environ. 2011;45:3913-3923.
  • 248. Press W.H., Teukolsky S.A., Vetterling W.T., Flaunnery B.P.: Numerical Recipes in Fortran. The art of scientific computing. Cambridge University Press; Cambridge: 1992.
  • 249. Puttock J.S., Colenbrander G.W., Blackmoore D.R.: Maplin Sands experiments 1980: Dispersion results from continuous releases of refrigerated liquid propane and LNG. In: Hartwig S. (ed.) Heavy gas dispersion. Reidel D. Publishing Company; Dordrecht: 1980,147-161.
  • 250. Puttock J.S.: Comparisons of Thorney Island data with predictions of HEGABOX/HEGADAS. J. Hazard. Mater. 1987;16:439-455.
  • 251. Puttock J.S., Blackmore DR., Colenbrander G.W.: Hold experiments on dense gas dispeision. J. Hazard. Mater. 1982;6:13-41.
  • 252. Qi R., Ng D., Cormier B.J., Pylaunan MS.: Nuerical simulations of LNG vapour dispersion in Brayton fire training field tests with ANSYS CFX. J. Hazard. Mater. 2010;183:51-61.
  • 253. Qin T.X., Guo Y.C., Lin W.Y.: Large eddy simulation of heavy gas dispersion around obstacles. In: Zhuang F.G., Li J.C. (eds) New trends in fluid mechanics research. Springer Verlag; Berlin, Heidelberg: 2008,107-110.
  • 254. Quaranta N., DeMartini A., Bellasio R., Bianconi R., Marioni M.: Environ. Modelling Soft. 2002;17:487-504.
  • 255. Raj P.K., Morris JA.: Source characterization and heavy gas dispersion models for reactive chemicals. 01803-5128, AFGL-TR-88-0003(1).Technology and Management Systems Inc.; Burlington, MA: 1987.
  • 256. Ramsay S.R.: Dense gas dispersion in complex settings. Part 1: The effects of obstacie, Iii: Cer- mak J.E., Dayenport AG., Plate E.J., Viegas D.X. (eds): Wind cilmate in cities. Kluwer Academic Publishers; Dordrecht: 200 la,575-605.
  • 257. Ramsay S.R.: Dense gas dispersion in complex settings. Part 11: The elfects of topography. In: Cermak J.E., Dayenport AG., Plate E.J., Viegas D.X. (eds): Wind climate in cities. Kluwer Academic Publishers, Dordrecht: 2001b,607-629.
  • 258. Ramsdell J.Y., Fosmire C.J.: Estimating concentrations in plumes released in the vicinity of buildings: model development. Atmos. Environ. 1998;32:1663-1677.
  • 259. Rigas F., Sklavounos S.: Simulation of Coyote trials- Part II: A computational approach to ignition and combustion of flammable vapour clouds. Chem. Eng. Science. 2006;61:1444-1452.
  • 260. Rigas F., Sklavounos S.: Computer simulation in consequence analysis and loss prevention. In: New research on hazardous materials. Warrey P.B. (ed.) Nova Science Publishing Inc.; New York; 2007,161-208.
  • 261. Riou Y.: Comparison between MERCURE GL: code calculations, wind tunnel measurements and Thorney Island field trials. J. Hazard. Mater. 1987;16:247-265.
  • 262. Robins A., Castro I., Hayden P., Steggel N., Contini D., Heist D., Taylor T.J.: A wind study of dense gas dispersion in a stable boundary layer over a rough surface.Atmos. Environ. 2001a;35:2253-2263.
  • 263. Robins A., Castro I., Hayden P., Steggel N., Contini D., Heist D., Taylor T.J.: A wind tunnel study of dense gas dispersion in a neutral boundary layer over a rough surface. Atmos. Environ. 2001b;35:2243-2252.
  • 264. Roe D.: A model of the dispersion of dense vapour clouds. In: Proceedings of the second international symposium on Loss prevention and safety promotion in the chemical industries. 6-9 September 1977, Frankfurt, Germany: 1977,359-366.
  • 265. Ross A.N., Linden P.F., Dalziel S.B.: A study of three-dimensional gravity currents on uniform slope. J. Fluid Mech. 2002;453:239-261.
  • 266. Rottman J.W, Hunt J.C.R., Mercer A.: The initial and gravity spreading phases of heavy gas dispersion: comparison of model with phase one data. J. Hazard. Mater. 1985;11:261-279.
  • 267. Ruj B., Chatterjee P.K.J.: Toxic release of chlorine and off site emergency scenario - A case study. J. Loss Prev. Proc. Ind. 2012;650-653.
  • 268. Rutkowski J.D.: Źródła zanieczyszczeń powietrza atmosferycznego. Wydawnictwa Politechniki Wrocławskiej; Wrocław: 1993.
  • 269. Sanchez EX, Lerner J.E.C., Porta A., Jacovkis P.M.: Accidental release of chlorine in Chicago: Coupling of an exposure model with a Computational Fluid Dynamics model. Atmos. Environ. 2013;64:47-55.
  • 270. Scargiali F., Di Rienzo E., Ciofalo M., Grisafi F., Brucato A.: Heavy gas dispersion modelling over a topographically complex mesoscale: a CFD based approach. Proc. Safety Environ. Protect. 2005;83:242-256.
  • 271. Sciargali F., Grisall F., Busciglio A., Brucato A.: Modeling and simulation of dense cloud dispersion in urban areas by means of computational dynamics. J. Hazard. Mater. 2011; 197:285-293.
  • 272. Scenna N.J., Santa Cruz A.SM.: Road risk analysis due to the transportation of chlorine in Rosario Sity. Rebab. Eng. Syst. Saf. 2005;90:83-90.
  • 273. Schatzmann M., Marotzke K., Donat J.: Research on continuous and instantaneous heavy gas clouds, EV report 91-026/r.24IHVG, University of Hamburg; Hamburg: 1990.
  • 274. Schatzmann M., Marotzke K., Donat J.: A research on continuous and instantaneous heavy gas clouds. Contribution to project EV 4T-0021-D to the final report of the joint CEC project. University of Hamburg; Hamburg: 1991.
  • 275. Schatzmann M., Snyder W.H., Lawson R.E.: Experiments with heavy gas jets in laminar and turbulent cross flows. Atmos. Environ. 1993;27:1105-1116.
  • 276. Schatzmann M.: Accidental releases of heavy gases in urban areas. In: Cermak J.E., Davenport A.G., Plate E.J., Viegas D.X. (eds) Wind climate in cities. Kluwer Academic Publishers; Dordrecht: 2001, 555-574.
  • 277. Schatzmann M., Snayder W.E, Lawson R.E. Jr.: Building effects on heavy gas jet dispersion. In: Proceedings of international conference and workshop on Modelling and mitigating the consequences of accidental releases of hazardous materials, New Orleans 1995, 359-378.
  • 278. Schreurs P., Mewis J.: Development of a transport phenomena model for accidental (heavy gas) releases in an industrial Environment. Atmos. Environ. 1987;21:765.
  • 279. Schreurs P., Mewis J. Havens J.: Numerical aspects of a Lagrangian particle model for atmospheric dispersion of heavy gases. J. Hazard. Mater. 1987;17:61-81.
  • 280. Simpson J.E., Britter R.E.: The dynamics of a head of a gravity current advancing over a horizontal surface. J. Fluid Mech. 1979;94:447-495.
  • 281. Simpson J.E., Britter R.E.: A laboratory model of an atmospheric mesofront. Quart. J. R. Meteorol. Soc. 1980;106:485-500.
  • 282. Simpson J.E.: Gravity currents in the Environment and the laboratory. Cambridge University Press; Cambridge: 1997.
  • 283. Simpson. J.E.: Gravity currents in the laboratory, atmosphere and ocean. Ann. Rev. Fluid Mech. 1982;14;213-234.
  • 284. Skrzypski J.: Analiza i modelowanie pól emisji zanieczyszczeń powietrza w dużych miastach. Polska Akademia Nauk, Oddział w Łodzi; Łódź: 2002.
  • 285. Schmidt W.: Zur Mechanik der Böen. Meteorologisches Zeitschrift, 1911,355-362. Sklavounos S., Rigas F.: Validation of turbulence models in heavy gas dispersion over obstacles. J. Hazard. Mater. 2004;A108:9-20.
  • 286. Sklavounos S., Rigas F.: Simulation of Coyote series trialas. Part 1: CFD estimation of non-isothermal LNG releases and comparison with box model prediction. Chem. Eng. Sci. 2006;61:1434-1443.
  • 287. Slade D. H.: Diffusion from instantaneous sources. Meteorology and Atomic Energy, TID-24190, USAEC, 1968:163-175.
  • 288. Smagorinsky J.: Numerical study of small scale intermittency in the three dimensional turbulence. Month. Weather Rey. 1963;91:99-164.
  • 289. Snyder WH.: Guidelines for fluid modeling of atmospheric diffusion. EPA-600/8-81-009,1981.
  • 290. Snyder W.H.: Wind-tunnel study of entrainment in two-dimensional dense gas plumes at the EPA, s fluid modeling facility. Atmos. Environ. 2001:35:2285-2304.
  • 291. Sorbjan Z.: Turbulencja i dyfuzja w dolnej atmosferze. PWN; Warszawa: 1983.
  • 292. Speziale C.G., Sarkar S., Gatski B.: Modelling the pressure strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 1991:227:245.
  • 293. Spicer T.0., Havens J.A.: Modeling of the phase I Thorney Island experiments. J. Hazard. Mater. 1985;11:237-260.
  • 294. Spicer T.O., Havens J.A.: Field test validation of the DEGADIS model. J. Hazard. Mater. 1987;16:231-245,
  • 295. Spicer T.O., Havens J.A.: Degadis version 2.1. US EPA, Research Triangle Park, NC, USA: 1989.
  • 296. Straszko J.: Ocean jakości powietrza w regionach przemysłowych. W: Suchecki T.T., Kapała J., Ku- mazawa H. (eds) Teoria i praktyka ochrony powietrza. Wydawnictwo IPIŚ PAN; Zabrze: 1998.
  • 297. Strużewska J. Kamiński J.W.: Formation and transport of photooxidants over Europe during the July 2006 heat wave observations and GEM-AQ model simulations. Atmospheric Chemistry and Physics, European Geoscience Union, 2008;8:721-736.
  • 298. Stretch D.: The dispersion of slightly dense contaminants. Phd Thesis. University of Cambridge; Cambridge: 1986.
  • 299. Stull R.: Introduction to boundary layer meteorology. Kluwer academic Publishing; Dordrecht: 1988.
  • 300. Sykes R.I., Cerasoli C.P., Henn D.S.: The representation of dynamic flow effects in a Lagrangian puff dispersion model. J. Hazard. Mater. 1998;64:223-247.
  • 301. Sun B., Utikar R.P., Pareek Y.K., Guo K.: Computational fluid dynamic analysis of liquefied natural gas dispersion for risk assessment strategies. J. Loss Prev. Proc. Ind. 2013;26:117-128.
  • 302. Taft J.R., Ryn M.S., Weston D.A.: MARIAH a dispersion model for evaluating realistic heavy gas spills scenarios. In: Proceedings of the American Gas Association Transmission conference, Seattle: 1983.
  • 303. Tauseef S.M., Rashtchian D., Abbasi S.A.: CFD based simulation of dense gas dispersion in presence of obstacles. J. Loss Prev. Proc. Ind. 2011;24:371-376.
  • 304. Taylor P.A., Salmon J.R.: A model for the correction of surface wind data for sheltering by upwind obstacles. J. Appl. Meteor. 1993;32:1683-1694.
  • 305. Thomson S.M., Turner J. S.: Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech. 1975;67:349-368.
  • 306. Thorpe S.A.: Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech. 1973;61:731-751.
  • 307. Tickle G.A.: A model of the motion and dilution of a heavy gas cloud released on a uniform slope in calm conditions. J. Hazard. Mater. 1996;49:29-47.
  • 308. Turner D.B.: Workbook of atmospheric dispersion estimates. Lewis Publishers; New York: 1970. Turner J.S.: Buoyancy effects in fluids. Cambridge University Press; Cambridge: 1973.
  • 309. Turner J. S.: Turbulent entrainment: the development of the entrainment assumption and its applica- tion to geophysical flows. J. Fluid Mech. 1986;173:431-471.
  • 310. Uliasz M.: The atmospheric mesoscale dispersion modelling system (MDMS). J. Appl. Meteor. 1993;32:139-149.
  • 311. Uliasz M., Olędrzyński K., Bartnicki J.: Mesoscale modelling of transport and deposition of heavy metals in southem Poland. In: Air pollution modelling and its application XII. Gryning S.E., Chaumerliac N. (eds) Plenum Press; New York, London: 1998,53-61.
  • 312. US EPA, Interim procedures for evaluating air quality models (revised). EPA-450/4-84-023. OAQPS, US Environmental Protection Agency; Research Triangle Park, NC: 1984.
  • 313. van Oort H., Builtjes P.J.H.: Research on continuous and instantaneous heavy gas clouds. MT-TNO wind tunnel experiments. Report 91-026. TNO Division of Technology for Society; Apeldoorn: 1991.
  • 314. van Ulden A.P.: On the spreading of a heavy gas released near the ground. In: Buschman C.H. (ed.) Proceedings of the first international symposium on Loss prevention and safety promotion in process industries. May, 1974, The Hague/Delft, The Netherlands. Elsevier; Amsterdam: 1974,221-226.
  • 315. van Ulden A.P.: A new bulk model for dense gas dispersion of two dimensional spread in still air. In: Ooms G., Tennekes H., (eds) Atmospheric dispersion of heavy gases and small particles. Springer Verlag; Berlin, Heidelberg: 1984,419-440.
  • 316. van Ulden A.P.: The spreading and mixing of dense gas cloud in still air. Scientific report WR87-12. KNMI; De Bild: 1987a.
  • 317. van Ulden A.P.: The heavy gas mixing process in still air at Thorney Island and in the laboratory. J. Hazard. Mater. 1987b;16:411-425.
  • 318. van Ulden A.P., Holtslag A.A.M.: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate and Appl. Meteor. 1985;1l:1196-1207.
  • 319. VDI Guidelines. VDI 3783 Part II: Environmental Meteorology. Dispersion of heavy gases. Beuth Verlag Berlin/VDI Dusseldorf: 1990 (in German).
  • 320. Venetsanos A.G., Bartzis J.G., Würtz J., Papailiou D.D.: DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features, J. Hazard. Mater. 2003;A99:111-144.
  • 321. Venkatram A.: Uncertainty in predictions from air quality models. Bound. Layer Meteor. 1983;27:186-196.
  • 322. Vergison E.: A quality assurance guide for the evaluation of mathematical models used to calculate the consequences of major hazards. J. Hazard. Mater. 1996;49:281-297.
  • 323. Webber DM., Jones S.J., Tickle G.A., Wren T.: A model of the dispersion dense gas cloud and the computer implementation DRIFT. Part 1: Near-instantaneous releases. Report R 586, Safety and Reliability Directorate; Wigshaw Lane, Culcheth, Cheshire: 1992a.
  • 324. Webber D.M., Jones S.J., Tickie G.A., Wren T.: A model of dispersion dense gas cloud and the computer implementation DRIFT. Part II: Steady continuous releases. Report R 587. Safety and Reliability Directorate; Wigshaw Lane, Culcheth, Chesbire: 1992b.
  • 325. Webber DM., Jones S.J., Martin D.: A model ofthe motion of a heavy gas cloud released on a urn- form siope. J. Hazard. Mater. 1993;33:101-122.
  • 326. Webber D.M, Jones S.J., Martin D.: Modelling the effects of obstacles on the dispersion of hazardous materials. In: Proceedings of the CCPS international conference and workshop on Modelling and mitigating the consequences of accidental releases of hazardous materials. New Orleans, LA, USA, 26-29 Sept 1995, American Institute of Chemical Engineers /Center for Chemical Process Safety; New York: 1995,379-403.
  • 327. Webber D.M., Gant S.E., Ivings M.J., Jagger S.F.: LNG source term models for hazard analysis: a Review of the state of the art and an approach to model assessment. Health and Safety Laboratory: 2009.
  • 328. Webber D.M.: Prywatna korespondencja 2013.
  • 329. Weil J.C., Sykes R., Venkatrani A.: Evaluating air quality models: Review and outlook. J. Appl. Meteor. 1992;31(10):1121-l145.
  • 330. Wheatley C.J., PrinceA.J.: Translational cloud speeds in the Thorney Island Trials. J. Hazard. Mater. 1987;16:185-199.
  • 331. Wieringa J.: A revaluation of the Kansas mast influence on measurement of stress and cup anemometer over speeding. Bound. Layer Meteor. 1980;18:411-430.
  • 332. Wieringa J.: Representativeness of wind observations at airports. Bull. Amer. Meteor. Soc. 1980;51:962-971.
  • 333. Wilkinson D.L., Wood J.R.: Some observations on the motion of head of a density current. J. Hydraul. Res. 1972;10:305-324.
  • 334. Williams M.D., Brown M.J.: Adaptation of the QUIC-PLUME model for heavy gas dispersion. In: Proceedings of the symposium on Atmospheric science and air quality. San Francisco, CA, USA, 27-29 April, 2005 (session 8.6).
  • 335. Witlox H.W.M.: The HEGADAS model for grounded level heavy gas dispersion. Part 1: Steady state model. Atmos. Environ. 1994,28:2917-2932.
  • 336. Witlox H.W.M.: The HEGADAS model for ground level heavy gas dispersion. Part II: Time dependent model. Atmos. Environ. I 994b2X :2933-2916.
  • 337. Witlox H.W.M., McFarlane K.: Interfacing dispersion models in the HGSYSTEM hazard-assessnent package. Atmos. Environ. 1994c:28:2947-2962.
  • 338. Witlox H.W.M., Harper K.M., Oke A., Stene J.: Validation of discharge and atmospheric dispersion for unpressurised and pressurized carbon dioxide releases. Process safety and Env. Prot. 2014;92:3-16.
  • 339. Wolansky E.J, Brush L.M.: Turbulent entrainmen across stable density step structures. Tellus, 1975;27:259-268.
  • 340. Woodward J.L.: J. An integrated model for discharge rate, pool spread, and dispersion from punctured process vessels. J. Loss Prev. Proc. Ind. 1990;33-37.
  • 341. Woodward J.L., Cook J., Papadourakis A.: Modelling and validation of a dispersing aerosol jet. J. Hazard. Mater. 1995;44:185-207.
  • 342. Woodward J.L., Papadourakis A.: Reassessment and revaluation of rainout and drop size correlation for an aerosol jet. J. Hazard. Mater. 1995;44:209-230.
  • 343. Würtz J.: A transient one dimensional shallow layer model for dispersion of denser that air gases on obstructed terrain under non isothermal conditions. Report EUR 15343; JRC, Ispra, Italy: 1993.
  • 344. Würtz J., Bartzis J., Venestanos A., Andronopoulos S. Statharas J., Nijsing R.: A dense vapour dis- persion code package for applications in the chemical and process industry. J. Hazard. Mater. 1996;46:173-284
  • 345. Wyszogrodzki A.A.: Wpływ procesów falowych w atmosferze na strukturę planetarnej warstwy granicznej. Praca doktorska. Instytut Geofizyki; Uniwersytet Warszawski: 2000.
  • 346. Yaglom A.M.: Comments on wind and temperature flux profile relationships. Bound. Layer Meteor. 1977;11:89-102.
  • 347. Zeman O.: The dynamics and modelling of heavier-than-air cold gas releases. Atmos. Environ. 1982;16:741-751.
  • 348. Zwoździak J.: Metody prognozy i analizy stężeń zanieczyszczeń w powietrzu w regionie czarnego trójkąta. Oficyna Wydawnicza Politechniki Wrocławskiej; Wrocław: 1995. https://emars.jrc.ec.europa.eu
  • 349. https:/legislacja.rcl.gov.pl
  • 350. https://Oxforddictonaries
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e123a6d-8155-485a-af69-f29a1cbdb427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.