PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Adhesive Wear Mechanism for Application in Hybrid Tool Wear Model in Hot Forging Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In hot forging process, tool life is an important factor which influences the economy of production. Wear mechanisms in these processes are dependent on each other, so modeling of them is a difficult problem. The present research is focused on development of a hybrid tool wear model for hot forging processes and evaluation of adding adhesive mechanism component to this model. Although adhesive wear is dominant in cases, in which sliding distances are large, there is a group of hot forging processes, in which adhesion is an important factor in specific tool parts. In the paper, a proposed hybrid tool wear model has been described and various adhesive wear models have been reviewed. The feasible model has been chosen, adapted and implemented. It has been shown that adding adhesive wear model increases predictive capabilities of the global hybrid tool wear model as far as characteristic hot forging processes is considered.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Zwierzchowski, Arch. Civ. Mech. Eng. 14, 528-539 (2014).
  • [2] J. F. Archard, J. Appl. Phys. 24, 981-988 (1953).
  • [3] O. Barrau, C. Boher, C. Vergne, F. Rezai-Aria, Proc. 6th Int. Tooling Conference, Karlstad, 95-111, 2002.
  • [4] R. Iamtanomchai, S. Bland, Proc. World Congress on Engineering WCE, 2, 833-838, London 2015,
  • [5] S. Abachi, M. Akkok, M. I. Gokler, Tribol. Int. 43, 467-473 (2010).
  • [6] B.-A. Behrens, F. Schäfer, Steel Res. Int. 80, 887-891 (2009).
  • [7] X. Wang, Z. Qi, K. Chen, Y. Liu, E. Wang, Int. J. Adv. Manuf. Techol. 06, (2019).
  • [8] B.-A. Behrens, A. Bouguecha, T. Hadifi, A. Klassen, Key Eng. Mat. 504-506, 163-168 (2012).
  • [9] E. N. Sosenushkin, A. V. Khromenkov, Y. A. Melnik, J. Frict., Wear+ 35, 525-530 (2014).
  • [10] S. Chander, V. Chawla, Mater. Today-Proc. 4 (2), 1147-1157 (2017).
  • [11] J. Hardell, S. Hernandez, S. Mozgovoy, L. Pelcastre, C. Courbon, B. Prakash, Wear 330-331, 223-229 (2015).
  • [12] L. Lavtar, T. Muhic, G. Kugler, M. Tercelj, Eng. Fail. Anal. 18, 1143-1152 (2011).
  • [13] B.-A. Behrens, CIRP Ann. - Manuf. Techn. 57, 305-308 (2008)
  • [14] M. Wilkus, S. Polak, Z. Gronostajski, M. Kaszuba, Ł. Rauch, M. Pietrzyk, Computer Methods in Material Science 15 (2), 311-321 (2015).
  • [15] Z. Gronostajski, S. Ziółkiewicz, M. Hawryluk, M. Kaszuba, S. Polak, K. Jaśkiewicz, T. Będza, Computer Methods in Materials Science 13, 77-83 (2013).
  • [16] C. Choi, A. Groseclose, T. Altan, J. Mater. Process. Tech. 212, 1742-1752 (2012).
  • [17] B. Mrzygłód, M. Hawryluk, Z. Gronostajski, A. Opaliński, M. Kaszuba, P. Polak, S. Widomski, J. Ziemba, M. Zwierzchowski, Arch. Civ. Mech. Eng. 18, 1079-1091 (2018).
  • [18] D. M. D’Addona, D. Antonelli, Proc. Cirp. 79, 632-637 (2018).
  • [19] M. Wilkus, D. Szeliga, Ł. Rauch, M. Pietrzyk, Computer Methods in Materials Science 17 (4), 195-206 (2017).
  • [20] M. Wilkus, Ł. Rauch, Z. Gronostajski, S. Polak, M. Pietrzyk, Proc. Conf. NUMIFORM, Troyes, MATEC Web of Conferences, 80 (2016).
  • [21] M. Wilkus, Ł. Rauch, D. Szeliga, Proc. X Conf. FiMM - Fizyczne i Matematyczne Modelowanie Procesów Wytwarzania, Jabłonna (2017).
  • [22] J. Ferrante, J. Smith, Phys. Rev. 19 (8), 3911-3920 (1979).
  • [23] R. Aghababaei, D. H. Warner, J. Molinari, Nat. Commun. 7 (2016).
  • [24] I. Kovarikova, B. Szewczykova, P. Blaskovits, E. Hodulova, E. Lechovic, Mater. Sci. Tech. Ser. 9 (1) (2009).
  • [25] X. Yin, K. Komvopoulos, Int. J. Solids Struc. 47 (7-8), 912-921 (2010).
  • [26] M. C. Shaw, Wear 43, 263-266 (1977).
  • [27] C. D. Warren, J. J. Wert, J. Adhes. Sci. Technol. 4, 177-196 (1990).
  • [28] R. J. Good, Adhesion Science and Technology, A, 37-41 (1975).
  • [29] C. Dahl, V. H. Vazquez, T. Altan, SENAFOR, Proc. XX Conf. SENAFOR Porto Allegre (2000).
  • [30] S. K. Rhee, Wear 16, 431-445 (1970).
  • [31] M. Hawryluk, J. Ziemba, Ł. Dworzak, P. Kaczyński, M. Kasprzak, Int. J. Adv. Manuf. Technol. 97, 2009-2018 (2018).
  • [32] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Zwierzchowski, A. Niechajowicz, S. Polak, Arch. Metall. Mater. 56 (2), 551-558 (2011).
  • [33] Y. Xue, J. Chen, S. Guo, Q. Meng, J. Luo, Friction 6 (3), 297-306 (2018).
Uwagi
EN
The work performed within the AGH project no. 16.16.110.663 financed by the Ministry of Science and Higher Education in Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e0f07de-4c8d-4093-bbc6-ac3f4d07a1fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.