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Abstract. The paper considers a problem of analytic continuation of solutions of some
nonlinear convolution partial differential equations which naturally appear in the summa-
bility theory of formal solutions of nonlinear partial differential equations. Under a suitable
assumption it is proved that any local holomorphic solution has an analytic extension to a
certain sector and its extension has exponential growth when the variable goes to infinity in
the sector.
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1. INTRODUCTION

The multisummability of formal solutions of general ordinary differential equations
was first proved by Braaksma [3]; different proofs were given by many authors (see
Balser [1, 2], Ramis-Sibuya [10] and their references). In the proof of Braaksma [3],
the key point of the proof is that he proved an analytic continuation property of a
solution of the convolution equation which is obtained by Borel transformation of the
ordinary differential equation.

In the case of partial differential equations, the way of proof by Braaksma was
followed by Ouchi [8, 9], Tahara-Yamazawa [11] and Luo-Chen-Zhang [6] in treating
various types of partial differential equations. But still there are many types of partial
differential equations which have formal solutions but the summability has not been
proved yet.

In this situation, it will be worthy to study the analytic continuation problem
itself for convolution partial differential equations, apart from the application to the
summability theory.
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Thus, in this paper we consider the following problem:

Problem 1.1. Find such a class of convolution partial differential equations that
a local holomorphic solution has an analytic extension to a suitable sector and its
extension has exponential growth in the sector when variable goes to infinity.

As is mentioned above, the arguments in [6, 8, 9, 11] have given some answers to this
problem. In this paper, we will introduce a new class of nonlinear convolution partial
differential equations which has a nice application: the typical feature of this class is
that the structure is very close to Maillet type theorems developed in Gérard-Tahara
[4] and so we can apply a similar argument. In the case of linear equations, this class is
the same as the one introduced in [11]. The application will be given in a forthcoming
paper.

Throughout this paper, we let t be the variable in Ct (or in R(Ct \ {0}) the
universal covering space of Ct \ {0}), and let x = (x1, . . . , xK) be the variable in CKx .
We denote by OR the set of all holomorphic functions in x in a neighborhood of DR =
{x ∈ CK ; |xi| ≤ R (i = 1, . . . ,K) }, and by OR[[t]] the ring of formal power series
in t with coefficients in OR. We often denote by C{t} the ring of convergent power
series in t with complex coefficients. We set N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}.

2. MAIN THEOREM

Let k > 0, I = (θ1, θ2) be an open interval of R, and we write SI = {t ∈ R(Ct \ {0});
θ1 < arg t < θ2}, and SI(r) = {t ∈ SI ; 0 < |t| < r} for 0 < r ≤ ∞. For holomorphic
functions f(t, x) and g(t, x) on SI(r)×DR, we define the k-convolution (f ∗k g)(t, x)
with respect to t by

(f ∗k g)(t, x) =

t∫

0

f(τ, x)g((tk − τk)1/k, x)dτk, (t, x) ∈ SI(r)×DR.

For basic properties of k-convolution, see Balser [1, 2], Ouchi [8, 9] and
Tahara-Yamazawa [11]. For simplicity, we use the notations:

u∗k2 = u ∗k u, u∗k3 = u ∗k u ∗k u and so on,
∏

i=1,2

∗k
ui = u1 ∗k u2,

∏

i=1,2,3

∗k
ui = u1 ∗k u2 ∗k u3 and so on.

For (i, α) ∈ N× NK , we write

Mi,α[w] =

{
tk|α|−k

Γ(|α|) ∗k
[
(ktk)iw

]
, if |α| > 0,

(ktk)iw, if |α| = 0,

where α = (α1, . . . , αK) ∈ NK and |α| = α1 + . . . + αK . As is often used in [11],
Mi,α[w] is nothing but the k-Borel transform of

tk|α|
(
tk+1 ∂

∂t

)i
W under w = Bk[W ].
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One answer to Problem 1.1 is to consider the convolution partial differential equa-
tion

P (ktk, x)u = f(t, x) +
∑

i+|α|≤m
ai,α(t, x) ∗k

(
Mi,α[∂αx u]

)

+
∑

|ν|≥2

bν(t, x) ∗k
∏

i+|α|≤m

∗k(
Mi,α[∂αx u]

)∗kνi,α (2.1)

(where ν = {νj,α}j+|α|≤m ∈ NN with N = #{(j, α) ∈ N × NK ; j + |α| ≤ m}, and
|ν| = ∑j+|α|≤m νj,α) under the following assumptions:

(A1) k ≥ 1 is an integer, and 0 < |I| < 2π/k;
(A2) l and m are integers with 0 ≤ l ≤ m;
(A3) P (λ, x) = λl + c1(x)λl−1 + . . . + cl−1(x)λ + cl(x), and the coefficients ci(x)

(i = 1, . . . , l) are holomorphic functions in a neighborhood of DR0
for some

R0 > 0;
(A4) f(t, x), ai,α(t, x) (i+|α| ≤ m) and bν(t, x) (|ν| ≥ 2) are all holomorphic functions

on SI ×DR0
;

(A5) there are integers µ ≥ 1, pi,α ≥ 1 (i + |α| ≤ m) and qν ≥ 1 (|ν| ≥ 2) such that
the estimates

|f(t, x)| ≤ F

Γ(µ/k)
|t|µ−k exp(c|t|k) on SI ×DR0

,

|ai,α(t, x)| ≤ Ai,α
Γ(pi,α/k)

|t|pi,α−k exp(c|t|k) on SI ×DR0 (i+ |α| ≤ m),

|bν(t, x)| ≤ Bν
Γ(qν/k)

|t|qν−k exp(c|t|k) on SI ×DR0 (|ν| ≥ 2)

hold for some c > 0, F ≥ 0, Ai,α ≥ 0 (i+ |α| ≤ m) and Bν ≥ 0 (|ν| ≥ 2);
(A6) moreover, the sum ∑

|ν|≥2

Bνt
qνX |ν|

is convergent in a neighborhood of (t,X) = (0, 0) ∈ C2.

If bν(t, x) ≡ 0 holds for all |ν| ≥ 2, (2.1) is a linear equation and it is just the same
as the one treated in [11].

To show that (2.1) is an answer to Problem 1.1 we must show that (2.1) satisfies
the analytic continuation property posed in Problem 1.1. To do so, let us define two
indices sa and sb. For x ∈ R we write [x]+ = max{x, 0}. For ν = {νi,α}i+|α|≤m ∈ NN
we set mν = max{i+ |α| ; νi,α > 0} and

〈ν〉l =
∑

i+|α|≤m
[i+ |α| − l]+νi,α =

∑

l+1≤i+|α|≤m
(i+ |α| − l)νi,α.

Under the assumptions (A1)–(A6), we set

∆a = {(i, α) ∈ N× NK ; l + 1 ≤ i+ |α| ≤ m, ai,α(t, x) 6≡ 0},
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∆b = {ν ∈ NN ; |ν| ≥ 2,mν ≥ l + 1, bν(t, x) 6≡ 0},

sa = 1 + max

[
0, max

(i,α)∈∆a

( i+ |α| − l
pi,α + k(i+ |α| − l)

)]
,

sb = 1 + max

[
0, max

ν∈∆b

( mν − l
qν + k〈ν〉l + µ(|ν| − 1)

)]
.

If l = m holds, we have ∆a = ∅ and ∆b = ∅. This means that sa = 1 and sb = 1.
Now, we define κ > 0 by

1/κ = 1/k − (s0 − 1) with s0 = max{sa, sb}. (2.2)

Lemma 2.1. If ∆ = ∆a ∪∆b = ∅, we have s0 = 1, and so we have κ = k. If ∆ 6= ∅,
we have 0 < s0 − 1 < 1/k, and so we have κ > k.

Proof. The first half is clear. Let us show the latter half. If ∆a 6= ∅, we have

sa − 1 = (i+ |α| − l)/(pi,α + k(i+ |α| − l))

for some (i, α) ∈ ∆a, and so

0 < sa − 1 =
i+ |α| − l

pi,α + k(i+ |α| − l) <
i+ |α| − l

k(i+ |α| − l) = 1/k.

If ∆b 6= ∅, we have

sb − 1 = (mν − l)/(qν + µ(|ν| − 1) + k〈ν〉l)

for some ν ∈ ∆b. Since mν = i+ |α| holds for some (i, α) with νi,α > 0, we have

0 < sb − 1 =
i+ |α| − l

qν + µ(|ν| − 1) + k〈ν〉l
<

i+ |α| − l
k(. . .+ (i+ |α| − l)νi,α + . . .)

<
1

k
.

Thus, we have seen that if ∆ 6= ∅, we have 0 < s0 − 1 < 1/k, and so κ > k.

The following result is the main theorem of this paper.

Theorem 2.2. Suppose the conditions (A1)–(A6). Let λ1(x), . . . , λl(x) be the roots
of P (λ, x) = 0, and assume that

λi(0) = 0 or λi(0) ∈ C \ π(SkI) for i = 1, 2, . . . , l (2.3)

(where π is the projection π : R(C \ {0}) −→ C). Let κ > 0 be as in (2.2). If u(t, x)
is a holomorphic solution of equation (2.1) on SI(δ)×DR0 for some δ > 0, and if it
satisfies |u(t, x)| ≤ M0|t|µ−k on SI(δ) × DR0 for some M0 > 0, then u(t, x) has an
analytic continuation u∗(t, x) on SI ×DR for some 0 < R < R0 such that

|u∗(t, x)| ≤ M

(|t|k + 1)l
|t|µ−k exp(b|t|κ) on SI ×DR (2.4)

holds for some M > 0 and b > 0.
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We note that 0 < |I| < 2π/k implies C \ π(SkI) 6= ∅, and so the condition
(2.3) makes sense. The rest part of this paper is organized as follows. The proof of
Theorem 2.2 will be given in Sections 3 and 4. In the next Section 3 we will prove
Theorem 2.2 in the case

λ1(0), . . . , λm(0) ∈ C \ π(SkI), (2.5)

and in Section 4 we will show Theorem 2.2 in the general case (2.3). In Section 5, we
will give a generalization to the case where the constants k > 0, µ > 0, pj,α > 0 and
qν > 0 in the assumptions (A1) and (A5) are not necessarily integers.

3. PROOF OF THEOREM 2.2 UNDER (2.5)

In this section, we will prove Theorem 2.2 under the condition:

λ1(0), . . . , λl(0) ∈ C \ π(SkI). (3.1)

The meaning of this condition lies in the following lemma:

Lemma 3.1. If (3.1) is satisfied, we have the estimate

|P (ktk, x)| ≥ σ(|t|k + 1)l on SI ×DR1

for some σ > 0 and R1 > 0 sufficiently small.

The plan of the proof of Theorem 2.2 is as follows. In Subsection 3.1 we construct
a formal solution of equation (2.1), in Subsections 3.2 and 3.3 we give some estimates
of this formal solution: in this proof we can see that the structure of (2.1) is very
similar to that of Maillet type theorem developed in Gérard-Tahara [4]. By using this
formal solution, in Subsection 3.4 we show the existence of a holomorphic solution
u∗(t, x) of (2.1) on SI × DR for some R > 0. In Subsection 3.5, we will show the
uniqueness of the local solution of (2.1), and complete the proof of Theorem 2.2.

3.1. CONSTRUCTION OF A FORMAL SOLUTION

Let us look for a formal solution of the form

u(t, x) =
∑

n≥µ
un(t, x). (3.2)

We substitute this formal series into equation (2.1) and then we collect the terms
of the same weight in the both sides of the equation: the weight is defined by the
following (we denote by w(f) the weight of f): w(P (ktk, x)) = 0, w(un) = n (n ≥ µ),
w(f) = µ, w(ai,α) = pi,α (i + |α| ≤ m), w(Mi,α) = k[i + |α| − l]+, w(∂αx ) = 0 and
w(bν) = qν (|ν| ≥ 2). Then, we can decompose our equation (2.1) into the following
recurrent formulas:

P (ktk, x)uµ = f(t, x), (3.3)
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and for n ≥ µ+ 1

P (ktk, x)un =
∑

i+|α|≤m
ai,α(t, x) ∗k (Mi,α[∂αx un−pi,α−k[i+|α|−l]+ ])

+
∑

2≤|ν|≤n−qν

∑

qν+|n(ν)|
+k〈ν〉l=n

bν(t, x) ∗k
∏

i+|α|≤m

∗k νi,α∏

j=1

∗k(
Mi,α[∂αx uni,α(j)]

)
,
(3.4)

where
n(ν) = (ni,α(j) ; i+ |α| ≤ m, 1 ≤ j ≤ νi,α), ni,α(j) ∈ N∗,

and
|n(ν)| =

∑

i+|α|≤m
(ni,α(1) + . . .+ ni,α(νi,α)).

In the formula (3.4) we used the convension: up(t, x) = 0 if p < µ. We denote by
O(W ) the set of all holomorphic functions on W . By Lemma 3.1, we can see that the
following result holds.

Proposition 3.2. Let R1 > 0 be sufficiently small. We have a unique solution
un(t, x) ∈ O(SI ×DR1

) (n ≥ µ) which solves the system (3.3) and (3.4) (n ≥ µ+ 1).

Moreover, we have another result.

Proposition 3.3. The above un(t, x) (n ≥ µ) satisfy the following estimates: there
are C > 0, h > 0 and ρ > 0 such that

|un(t, x)| ≤ Chn

(|t|k + 1)l
n!s−1

Γ(n/k)
|t|n−k exp(c|t|k) on SI ×Dρ

holds for any n ≥ µ and s ≥ max{sa, sb}.
Before we give the proof of this proposition, in Subsection 3.2 we present some

lemmas which are needed in the proof of Proposition 3.3, and then in Subsection 3.3
we give a proof of Proposition 3.3.

3.2. SOME LEMMAS

We write D◦R = {x ∈ CK ; |xi| < R (i = 1, . . . ,K)}, for the interior of DR. For a
holomorphic function ϕ(x) on D◦R, we set

‖ϕ‖ρ = max
|x|≤ρ

|ϕ(x)|, 0 < ρ < R.

For a > 0 and c ≥ 0, we set

φa(t; c) =
|t|a−k
Γ(a/k)

exp(c|t|k).

Then, the estimates in (A5) are expressed as |f(t, x)| ≤ Fφµ(t; c), |ai,α(t, x)| ≤
Ai,αφpi,α(t; c) and |bν(t, x)| ≤ Bνφqν (t; c) on SI × DR0

. By [8, Lemma 1.4] and [11,
Lemma 7.2] (with σ = 1 and ξ0 = 0), we have the following lemmas.
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Lemma 3.4. Let f(t, x) ∈ O(SI × D◦R) and g(t, x) ∈ O(SI × D◦R). Then we have
(f ∗k g)(t, x) ∈ O(SI × D◦R). If they satisfy the estimates ‖f(t)‖ρ ≤ Aφa(t; c) and
‖g(t)‖ρ ≤ Bφb(t; c) on SI for some 0 < ρ < R, A > 0, a > 0, B > 0 and b > 0, we
have the estimate ‖(f ∗k g)(t)‖ρ ≤ ABφa+b(t; c) on SI .

Lemma 3.5. Suppose that c ≥ l holds. Then for any µ > 0 there is a constant β > 0
which satisfies the following condition: if w(t, x) ∈ O(SI ×Dρ) for some ρ > 0 and if

‖w(t)‖ρ ≤
A

(|t|k + 1)l
φN (t; c) on SI

for some A > 0 and N ≥ µ, we have

‖Mi,α[w](t)‖ρ ≤
βN [i+|α|−l]+

N |α|
AφN+k[i+|α|−l]+(t; c) on SI

for any i+ |α| ≤ m.

The following lemma is very useful (for the proof, see [7] or Lemma 5.1.3 in [5]).

Lemma 3.6. If a holomorphic function ϕ(x) on D◦R satisfies

‖ϕ‖ρ ≤
A

(R− ρ)a
for any 0 < ρ < R

for some A > 0 and a ≥ 0, we have the estimates

∥∥∂xiϕ
∥∥
ρ
≤ (a+ 1)eA

(R− ρ)a+1
for any 0 < ρ < R and i = 1, . . . ,K.

3.3. PROOF OF PROPOSITION 3.3

Take any s ≥ max{sa, sb} and any R with 0 < R < min{1, R1}. Since uµ is a solution
of (3.3), by (A5) and Lemma 3.1 we have

|uµ(t, x)| =
∣∣∣ f(t, x)

P (ktk, x)

∣∣∣ ≤ F

σ(|t|k + 1)l
φµ(t; c) on SI ×DR1

and by Lemma 3.6 we have

‖∂αx uµ(t)‖R ≤
F

σ(|t|k + 1)l
φµ(t; c)× |α|! e|α|

(R1 −R)|α|
on SI .

Thus, by taking A > 0 sufficiently large we have

‖∂αx uµ(t)‖R ≤
A

µm−|α|
1

(|t|k + 1)l
φµ(t; c) on SI for any |α| ≤ m. (3.5)

Now, let us consider the following functional equation with respect to Y :
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Y =
A

(R− ρ)m(µ−1)
tµ

+
1

σ(R− ρ)m

[ ∑

i+|α|≤m

βAi,α
(R− ρ)m(pi,α+k[i+|α|−l]+−1)

× (µ+ pi,α + k[i+ |α| − l]+)m

µm−[i+|α|−l]+ tpi,α+k[i+|α|−l]+ηY

+
∑

|ν|≥2

Bν(qν + k〈ν〉l + µ|ν|)m
(R− ρ)m(qν+k〈ν〉l+|ν|−2)

tqν
∏

i+|α|≤m

[
β tk[i+|α|−l]+ηY

]νi,α
]
,

(3.6)

where ρ is a parameter with 0 < ρ < R, σ is the one in Lemma 3.1, and η = (me)m.
Since this equation (3.6) is an analytic functional equation, by the implicit function
theorem we see that (3.6) has a unique holomorphic solution Y = Y (t) with Y (t) =
O(tµ) (as t −→ 0). If we expand it into Taylor series Y =

∑
n≥µ Ynt

n, we see that the
coefficients Yn (n ≥ µ) are determined by the following recurrent formulas:

Yµ =
A

(R− ρ)m(µ−1)
, (3.7)

and for n ≥ µ+ 1

Yn =
1

σ(R− ρ)m

[ ∑

i+|α|≤m

βAi,α
(R− ρ)m(pi,α+k[i+|α|−l]+−1)

× (µ+ pi,α + k[i+ |α| − l]+)m

µm−[i+|α|−l]+ ηYn−pi,α−k[i+|α|−l]+

+
∑

2≤|ν|≤n−qν

∑

qν+|n(ν)|
+k〈ν〉l=n

Bν(qν + k〈ν〉l + µ|ν|)m
(R− ρ)m(qν+k〈ν〉l+|ν|−2)

∏

i+|α|≤m

νi,α∏

j=1

[
βηYni,α(j)

]]
,

(3.8)

where we used the convention: Yp = 0 if p < µ. Moreover, by induction on n we can
see that Yn has the form

Yn =
Cn

(R− ρ)m(n−1)
, n ≥ µ, (3.9)

where Cµ = A and Cn > 0 (n ≥ µ + 1) are constants which are independent of the
parameter ρ. Since Yn depends on the parameter ρ, we sometimes write Yn = Yn(ρ)
(if we hope to emphasize that it depends on ρ).

The following lemma guarantees that Y (t) is a majorant series of our formal
solution u(t, x) in (3.2).

Lemma 3.7. For any n ≥ µ we have

‖∂αx un(t)‖ρ ≤
(n− µ)!s−1

nm−|α|
η

(|t|k + 1)l
Ynφn(t; c) on SI

for any 0 < ρ < R and |α| ≤ m.
(3.10)n
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Proof of Lemma 3.7. By the definition of A in (3.5), and the conditions (3.7),
0 < R < 1 and η > 1 we have

‖∂αx uµ(t)‖ρ ≤ ‖∂αx uµ(t)‖R

≤ A

µm−|α|
1

(|t|k + 1)l
φµ(t; c) ≤ 1

µm−|α|
η

(|t|k + 1)l
Yµφµ(t; c) on SI

for any 0 < ρ < R and |α| ≤ m. This proves (3.10)µ. Let us show the general case by
induction on n.

Let n ≥ µ+1, and suppose that (3.10)N is already proved for all N with µ ≤ N ≤
n− 1. By (3.10)N and Lemma 3.5, we have

‖Mi,α[∂αx uN ](t)‖ρ ≤
β(N − µ)!s−1

Nm−[i+|α|−l]+ ηYNφN+k[i+|α|−l]+(t; c) on SI

for any 0 < ρ < R and i+ |α| ≤ m

for any µ ≤ N ≤ n− 1. We note that by the assumption (A5) we have

‖f(t)‖R ≤ Fφµ(t; c) on SI ,
‖ai,α(t)‖R ≤ Ai,αφpi,α(t; c) on SI (i+ |α| ≤ m),

‖bν(t)‖R ≤ Bνφqν (t; c) on SI (|ν| ≥ 2).

Therefore, by applying these estimates to (3.4), by using Lemma 3.4 and by setting

p∗i,α = pi,α + k[i+ |α| − l]+, q∗ν = qν + k〈ν〉l, (3.11)

we have

‖P (ktk)un(t)‖ρ

≤ φn(t; c)

[ ∑

i+|α|≤m
Ai,α

β(n− p∗i,α − µ)!s−1

(n− p∗i,α)m−[i+|α|−l]+ ηYn−pi,α−k[i+|α|−l]+

+
∑

2≤|ν|≤n−qν

∑

q∗ν+|n(ν)|=n
Bν

∏

i+|α|≤m

νi,α∏

j=1

[ β(ni,α(j)− µ)!s−1

ni,α(j)m−[i+|α|−l]+ ηYni,α(j)

]]

= φn(t; c)[I1 + I2]. (3.12)

We note that Yn−pi,α−k[i+|α|−l]+ 6= 0 implies n − pi,α − k[i + |α| − l]+ ≥ µ and so
in I1 we may suppose that n − p∗i,α ≥ µ holds. We also note that if I2 we have
n = q∗ν + |n(ν)| ≥ q∗ν + µ|ν|.
Lemma 3.8. Under the above situation we have

nm

(n− µ)!s−1

(n− p∗i,α − µ)!s−1

(n− p∗i,α)m−[i+|α|−l]+ ≤
(µ+ p∗i,α)m

µm−[i+|α|−l]+ in I1, (3.13)

nm

(n− µ)!s−1

∏

i+|α|≤m

νi,α∏

j=1

( (ni,α(j)− µ)!s−1

ni,α(j)m−[i+|α|−l]+

)
≤ (q∗ν + µ|ν|)m in I2. (3.14)
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Proof of Lemma 3.8. The proof of (3.13) is as follows. If 0 ≤ i + |α| ≤ l, we have
[i+ |α| − l]+ = 0 and so by using the condition n− p∗i,α ≥ µ we have

nm

(n− µ)!s−1

(n− p∗i,α − µ)!s−1

(n− p∗i,α)m−[i+|α|−l]+ =
nm

(n− µ)!s−1

(n− p∗i,α − µ)!s−1

(n− p∗i,α)m

≤ nm

(n− p∗i,α)m
=
(

1 +
p∗i,α

n− p∗i,α

)m
≤
(

1 +
p∗i,α
µ

)m
=
(µ+ p∗i,α

µ

)m
.

If l+1 ≤ i+ |α| ≤ m holds, by the condition s ≥ sa we have p∗i,α(s−1) ≥ [i+ |α|− l]+,
and so we have

nm

(n− µ)!s−1

(n− p∗i,α − µ)!s−1

(n− p∗i,α)m−[i+|α|−l]+

≤ nm

(n− p∗i,α)m−[i+|α|−l]+ ×
1

(n− µ− p∗i,α + 1)p
∗
i,α(s−1)

=
( n

n− p∗i,α

)m( n− p∗i,α
n− µ− p∗i,α + 1

)[i+|α|−l]+ (n− µ− p∗i,α + 1)[i+|α|−l]+

(n− µ− p∗i,α + 1)p
∗
i,α(s−1)

≤
( n

n− p∗i,α

)m( n− p∗i,α
n− µ− p∗i,α + 1

)[i+|α|−l]+

=
(

1 +
p∗i,α

n− p∗i,α

)m(
1 +

µ− 1

n− µ− p∗i,α + 1

)[i+|α|−l]+

≤
(

1 +
p∗i,α
µ

)m(
1 +

µ− 1

1

)[i+|α|−l]+
=

(µ+ p∗i,α)m

µm−[i+|α|−l]+ .

This proves (3.13).
Let us show (3.14). We note: if ni ≥ 1 (i = 1, . . . , |ν|) and n1 + . . .+ n|ν| = n− q∗ν

hold, we have ni ≤ (n1 . . . n|ν|) for i = 1, . . . , |ν| and so n − q∗ν = n1 + . . . + n|ν| ≤
|ν|(n1 . . . n|ν|) which yields n ≤ (q∗ν + |ν|)(n1 . . . n|ν|), that is,

1

n1 . . . n|ν|
≤ q∗ν + |ν|

n
.

Therefore, by the same argument we have

∏

i+|α|≤m

νi,α∏

j=1

1

ni,α(j)
≤ (q∗ν + |ν|)

n
in the case I2.

Since s ≥ sb holds, we have (q∗ν + µ(|ν| − 1))(s− 1) ≥ [mν − l]+, and so

nm

(n− µ)!s−1

∏

i+|α|≤m

νi,α∏

j=1

( (ni,α(j)− µ)!s−1

ni,α(j)m−[i+|α|−l]+

)
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≤ nm

(n− µ)!s−1
× (|n(ν)| − µ|ν|)!s−1

∏

i+|α|≤m

νi,α∏

j=1

( 1

ni,α(j)m−[mν−l]+

)

≤ nm

(n− µ)!s−1
× (|n(ν)| − µ|ν|)!s−1 ×

( (q∗ν + |ν|)
n

)m−[mν−l]+

=
n[mν−l]+

(n− µ)!s−1
× (n− q∗ν − µ|ν|)!s−1 × (q∗ν + |ν|)m−[mν−l]+

≤ n[mν−l]+

(n− q∗ν − µ|ν|+ 1)(q∗ν+µ(|ν|−1))(s−1)
× (q∗ν + |ν|)m−[mν−l]+

≤
( n

n− q∗ν − µ|ν|+ 1

)[mν−l]+
× (q∗ν + |ν|)m−[mν−l]+

=
(

1 +
q∗ν + µ|ν| − 1

n− q∗ν − µ|ν|+ 1

)[mν−l]+
× (q∗ν + |ν|)m−[mν−l]+

≤
(

1 +
q∗ν + µ|ν| − 1

1

)[mν−l]+
× (q∗ν + |ν|)m−[mν−l]+

= (q∗ν + µ|ν|)[mν−l]+ × (q∗ν + |ν|)m−[mν−l]+ ≤ (q∗ν + µ|ν|)m.

This proves (3.14).

Hence, by applying Lemma 3.8 to (3.12) we have

‖P (ktk)un(t)‖ρ

≤ (n− µ)!s−1

nm
φn(t; c)

[ ∑

i+|α|≤m
Ai,αβ

(µ+ p∗i,α)m

µm−[i+|α|−l]+ ηYn−pi,α−k[i+|α|−l]+

+
∑

2≤|ν|≤n−qν

∑

q∗ν+|n(ν)|=n
Bν(q∗ν + µ|ν|)m

∏

i+|α|≤m

νi,α∏

j=1

[
β ηYni,α(j)

]]
. (3.15)

By comparing (3.8) and (3.15) under the equalities (3.11), and then by using the
conditions 1/(R− ρ) > 1 and (3.9) we have

‖P (ktk)un(t)‖ρ ≤
(n− µ)!s−1

nm
φn(t; c)× σ(R− ρ)mYn

=
(n− µ)!s−1

nm
φn(t; c)× σ Cn

(R− ρ)m(n−2)
,

and so by Lemma 3.1 we have

‖un(t)‖ρ ≤
(n− µ)!s−1

nm
φn(t; c)× 1

(|t|k + 1)l
Cn

(R− ρ)m(n−2)
on SI

for any 0 < ρ < R. Hence, by Lemma 3.6, we have

‖∂αx un(t)‖ρ ≤
(n− µ)!s−1

nm
φn(t; c)

1

(|t|k + 1)l
(mn)|α|e|α|Cn

(R− ρ)m(n−2)+|α|
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≤ (n− µ)!s−1

nm−|α|
φn(t; c)

1

(|t|k + 1)l
(me)mCn

(R− ρ)m(n−2)+m

=
(n− µ)!s−1

nm−|α|
φn(t; c)

1

(|t|k + 1)l
ηYn on SI

for any 0 < ρ < R and |α| ≤ m. This proves (3.10)n.

Completion of the proof of Proposition 3.3. Take any 0 < ρ < R and fix it. Since
Y =

∑
n≥µ Ynt

n is a holomorphic function in a neighborhood of t = 0, we have the
estimates Yn ≤ Chn (n ≥ µ) for some C > 0 and h > 0. Therefore, applying this to
(3.10)n we have the estimate

‖un(t)‖ρ ≤ Chn
(n− µ)!s−1η

nm(|t|k + 1)l
φn(t; c)

for any n ≥ µ. This proves Proposition 3.3.

3.4. EXISTENCE OF A SOLUTION ON SI ×DR

Let us show the existence of a holomorphic solution u(t, x) of (2.1) on SI ×DR with
some exponential growth: we have

Theorem 3.9. Suppose the conditions (A1)–(A6) and (3.1). Let κ > 0 be the one
in (2.2). Then, equation (2.1) has a holomorphic solution u(t, x) on SI ×Dρ for some
ρ > 0 which satisfies the estimate

|u(t, x)| ≤ M

(|t|k + 1)l
|t|µ−k exp(b|t|κ) on SI ×Dρ (3.16)

for some M > 0 and b > 0.

As is seen in the proof given below, this result is valid also for (s, κ) satisfying
max{sa, sb} ≤ s < 1 + 1/k and 1/κ = 1/k − (s− 1).

To prove Theorem 3.9, we will need the following lemma.

Lemma 3.10. Let α > 0 and k > 0. For any d > 1 there is a C > 0 such that

∑

n≥0

tn

Γ((α+ n)/k)
≤ C exp(dtk) for t > 0. (3.17)

Precisely, for any d > 1 we can take C as

C = 1 +
B(α/k, 1/k)√

2π

∑

n≥1

√
n

k

(1

d

)n/k
,

where B(x, y) is the beta function.
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Proof. We know the following facts:

Γ(x) ≥
√

2πxx−1/2e−x for x > 0,

Γ(n/k)

Γ((α+ n)/k)
=
B(α/k, n/k)

Γ(α/k)
≤ B(α/k, 1/k)

Γ(α/k)
for n ≥ 1.

Since the maximum of xn/ke−dx (with n ≥ 1) on x > 0 is equal to (n/kd)n/ke−n/k,
we have

tn = edt
k × tne−dtk ≤ edtk ×max

x>0

(
xn/ke−dx

)

= edt
k ×

(1

d

)n/k
(n/k)n/ke−n/k ≤ edtk

(1

d

)n/k√n/k√
2π

Γ(n/k),

and therefore
∑

n≥0

tn

Γ((α+ n)/k)
=

1

Γ(α/k)
+
∑

n≥1

tn

Γ((α+ n)/k)

≤ 1

Γ(α/k)
+
∑

n≥1

1

Γ((α+ n)/k)
× edtk

(1

d

)n/k√n/k√
2π

Γ(n/k)

≤ 1

Γ(α/k)
+
∑

n≥1

edt
k B(α/k, 1/k)

Γ(α/k)

(1

d

)n/k√n/k√
2π

≤ edt
k

Γ(α/k)

(
1 +

B(α/k, 1/k)√
2π

∑

n≥1

√
n/k

(1

d

)n/k)
.

This proves (3.17).

Proof of Theorem 3.9. Take any s satisfying s ≥ max{sa, sb} and 0 ≤ s − 1 < 1/k,
and then define κ > 0 by 1/κ = 1/k − (s− 1). Let

u(t, x) =
∑

n≥µ
un(t, x)

be the formal solution constructed in Subsection 3.1.
First, let us see the case s = 1. In this case, we have κ = k. By Proposition 3.3,

we have
∑

n≥µ
|un(t, x)| ≤

∑

n≥µ

Chn

(|t|k + 1)l
|t|n−k
Γ(n/k)

exp(c|t|k)

=
Chµ|t|µ−k
(|t|k + 1)l

exp(c|t|k)
∑

q≥0

(h|t|)q
Γ((µ+ q)/k)

on SI ×Dρ.

By Lemma 3.10, we know that for any d > 1 there is a C1 > 0 such that
∑

q≥0

(h|t|)q
Γ((µ+ q)/k)

≤ C1 exp(dhk|t|k), |t| > 0.
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Thus, by applying this to the above formula and by setting M = C1Ch
µ > 0 and

b = c+ dhk > 0 we have the result (3.16).
Next, let us consider the case s > 1 (with s− 1 < 1/k). Since

n!s−1 ≤ C1h1
nΓ(n(s− 1)) n = 1, 2, . . .

holds for some C1 > 0 and h1 > 0, by Proposition 3.3, we have

|un(t, x)| ≤ Chn

(|t|k + 1)l
C1h1

nΓ(n(s− 1))

Γ(n/k)
|t|n−k exp(c|t|k)

=
CC1(hh1)n

(|t|k + 1)l
B(n/κ, n(s− 1))

Γ(n/κ)
|t|n−k exp(c|t|k)

≤ CC1(hh1)n

(|t|k + 1)l
B(1/κ, (s− 1))

Γ(n/κ)
|t|n−k exp(c|t|k) on SI ×Dρ

for any n ≥ µ. Therefore, if we set C2 = CC1B(1/κ, (s− 1)) and h2 = hh1 we have

∑

n≥µ
|un(t, x)| ≤

∑

n≥µ

C2h2
n

(|t|k + 1)l
|t|n−k
Γ(n/κ)

exp(c|t|k)

=
C2h2

µ|t|µ−k
(|t|k + 1)l

exp(c|t|k)
∑

q≥0

(h2|t|)q
Γ((q + µ)/κ)

on SI ×Dρ.

Thus, by using Lemma 3.10 and the condition κ > k, we can show (3.16) in the same
way as in the case s = 1.

3.5. UNIQUENESS OF THE LOCAL SOLUTION

Now, let us show the uniqueness of the local solution of (2.1). To do so, it is enough
to prove the result (Theorem 3.11) given below. Recall that for 0 < r <∞ we wrote
SI(r) = {t ∈ SI ; 0 < |t| < r}.
Theorem 3.11. Suppose the conditions (A1)–(A6) and (3.1). Let 0 < r < ∞ and
R > 0 be sufficiently small. If u1(t, x) ∈ O(SI(r)×DR) and u2(t, x) ∈ O(SI(r)×DR)
are two solutions of equation (2.1) on SI(r)×DR satisfying the estimates |ui(t, x)| ≤
M0|t|µ−k on SI(r)×DR (i = 1, 2) for some M0 > 0, then we have u1(t, x) = u2(t, x)
on SI(r)×DR.

In this case we will use

φn(t; 0) =
|t|n−k
Γ(n/k)

, n = 1, 2, . . . .

Before the proof of Theorem 3.11, we note that if we consider equation (2.1) on
SI(r)×DR, by the condition (A5) we have

|f(t, x)| ≤ F1φ1(t; 0) on SI(r)×DR,
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|ai,α(t, x)| ≤ Ai,α,1φ1(t; 0) on SI(r)×DR (i+ |α| ≤ m),

|bν(t, x)| ≤ Bν,1φ1(t; 0) on SI(r)×DR (|ν| ≥ 2)

for some F1 > 0, Ai,α,1 > 0 and Bν,1 > 0. Since r > 0 is assumed to be sufficiently
small, by (A6) we have the condition that the series

∑
|ν|≥2Bν,1X

|ν| is convergent in
a neighborhood of X = 0.

Moreover, by [11, Lemma 7.7], we have the following lemma.

Lemma 3.12. For any µ > 0 there is a constant β > 0 which satisfies the following:
if w(t, x) ∈ O(SI(r)×DR1

) for some R1 > 0 and if the estimate ‖w(t)‖R1
≤ AφN (t; 0)

on SI(r) for some A > 0 and N ≥ µ, we have

‖Mi,α[w](t)‖R1 ≤
β

N |α|
AφN (t; 0) on SI(r) for any i+ |α| ≤ m.

By using these conditions, let us give a proof of Theorem 3.11.

Proof of Theorem 3.11. Let u1(t, x) and u2(t, x) be two holomorphic solutions of (2.1)
on SI(r)×DR satisfying the estimate |ui(t, x)| ≤ M0|t|µ−k on SI(r)×DR (i = 1, 2)
for some M0 > 0.

Set u(t, x) = u1(t, x) − u2(t, x). By Lemmas 3.6 and 3.12 we have the following:
for any 0 < R1 < R, there is an M1 > 0 such that

‖Mi,α[∂αx u](t)‖R1
≤M1φ1(t; 0) on SI(r) for any i+ |α| ≤ m. (3.18)

Moreover, we have

P (ktk, x)u

=
∑

i+|α|≤m
ai,α(t, x) ∗k

(
Mi,α[∂αx u]

)

+
∑

|ν|≥2

bν(t, x) ∗k


 ∏

i+|α|≤m

∗k(
Mi,α[∂αx u1]

)∗kνi,α−
∏

i+|α|≤m

∗k(
Mi,α[∂αx u2]

)∗kνi,α

 .

Here we note that we have the expression

∏

i+|α|≤m

∗k(
Mi,α[∂αx u1]

)∗kνi,α−
∏

i+|α|≤m

∗k(
Mi,α[∂αx u2]

)∗kνi,α

=
∑

i+|α|≤m
cν,i,α(t, x) ∗k (Mi,α[∂αx (u1 − u2)])

for some holomorphic functions cν,i,α(t, x) ∈ O(SI(r) × DR1
) (i + |α| ≤ m). Let us

note a simple calculation:

X1
kY1

mZ1
n −X2

kY2
mZ2

n

= (X1
k −X2

k)Y1
mZ1

n +X2
k(Y1

m − Y2
m)Z1

n +X2
kY2

m(Z1
n − Z2

n)
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= (X1
k−1 +X1

k−2X2 + . . .+X2
k−1)Y1

mZ1
n × (X1 −X2)

+X2
k(Y1

m−1 + Y1
m−2Y2 + . . .+ Y2

m−1)Z1
n × (Y1 − Y2)

+X2
kY2

m(Z1
n−1 + Z1

n−2Z2 + . . .+ Z2
n−1)× (Z1 − Z2).

By using this argument, we can see that cν,i,α(t, x) (i + |α| ≤ m) are given by the
following: if νi,α = 0, we have cν,i,α(t, x) = 0, and if νi,α > 0, we have

cν,i,α(t, x) =
∏

(j,β)≺(i,α)

∗k(
Mj,β [∂βxu2]

)∗kνj,β

∗k
∑

p+q=νi,α−1

[(
Mi,α[∂αx u1]

)∗kp ∗k
(
Mi,α[∂αx u2]

)∗kq]

∗k
∏

(j,β)�(i,α)

∗k(
Mj,β [∂βxu1]

)∗kνj,β ,

where ≺ is any linear order in the set {(i, α) ; i+ |α| ≤ m} (by this order we can write
all elements as (ip, αp) (p = 1, 2, . . . , N) so that (i1, α1) ≺ (i2, α2) ≺ . . . ≺ (iN , αN )).

Thus, by setting

γi,α(t, x) = ai,α(t, x) +
∑

|ν|≥2

bν(t, x) ∗k cν,i,α(t, x), i+ |α| ≤ m,

we see that γi,α(t, x) (i + |α| ≤ m) are holomorphic functions on SI(r) × DR1
and

that u(t, x) satisfies a linear convolution partial differential equation

P (ktk, x)u =
∑

i+|α|≤m
γi,α(t, x) ∗k

(
Mi,α[∂αx u]

)
. (3.19)

Since
φ|ν|(t; 0) ≤ Γ(1/k)

Γ(|ν|/k)
r|ν|−1φ1(t; 0) on SI(r)

holds, by Lemma 3.4 and (3.18) we can see that γi,α(t, x) (i + |α| ≤ m) satisfy the
estimates

‖γi,α(t)‖R1 ≤ Ci,αφ1(t; 0) on SI(r) (i+ |α| ≤ m)

for some Ci,α ≥ 0 (i+ |α| ≤ m). Let us show the following lemma.

Lemma 3.13. There is a K > 0 such that for any n = 1, 2, . . . we have

‖Mi,α[∂αx u](t)‖ρ ≤ Kn−1 M1

(R1 − ρ)m(n−1)
φn(t; 0) on SI(r)

for any 0 < ρ < R1 and i+ |α| ≤ m.
(3.20)n

Proof of Lemma 3.13. In the case n = 1 this is already proved in (3.18). Let n ≥ 2
and suppose that (3.20)n−1 is already proved. Then by Lemma 3.1, (3.19) and the
induction hypothesis we have

‖u(t)‖ρ ≤
1

σ

∑

i+|α|≤m
Ci,αK

n−2 M1

(R1 − ρ)m(n−2)
φn(t; 0) on SI(r)
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for any 0 < ρ < R1. Therefore, by Lemmas 3.6 and 3.12, we have

‖Mi,α[∂αx u](t)‖ρ ≤
β

σ

∑

i+|α|≤m
Ci,αK

n−2 M1(me)m

(R1 − ρ)m(n−1)
φn(t; 0) on SI(r)

for any 0 < ρ < R1 and i+ |α| ≤ m. Thus, if we take K > 0 so that

K ≥ β

σ

∑

i+|α|≤m
Ci,α(me)m,

we have the result (3.20)n. This proves Lemma 3.13.

Thus, by letting n −→ ∞ in (3.20)n (with (i, α) = (0, 0)) we have ‖u(t)‖ρ = 0
for any 0 < ρ < R1 and t ∈ SI(r), that is, u(t, x) = 0 on SI(r) × DR1

. Since R1 is
taken so that 0 < R1 < R, the unique continuation property in x yields u(t, x) = 0
on SI(r)×DR. This proves Theorem 3.11.

3.6. COMPLETION OF THE PROOF OF THEOREM 2.2

Let u(t, x) be a holomorphic solution of equation (2.1) on SI(δ)×DR0
for some δ > 0

and R0 > 0, and suppose that it satisfies |u(t, x)| ≤M0|t|µ−k on SI(δ)×DR0
for some

M0 > 0. Let u∗(t, x) be a holomorphic solution of (2.1) on SI × DR constructed in
Theorem 3.9. If we consider the equation on SI(δ)×DR, we can apply the uniqueness
result in Theorem 3.11. Hence, we have u(t, x) = u∗(t, x) on SI(δ)×DR. This shows
that u∗(t, x) is a holomorphic extension of u(t, x) to the domain SI×DR. The estimate
(2.4) follows from (3.16). This proves Theorem 2.2 under (2.5).

4. PROOF OF THEOREM 2.2 IN THE GENERAL CASE

In this section we will prove Theorem 2.2 in the general case, that is, under the
condition:

λi(0) = 0 or λi(0) ∈ C \ π(SkI) for all i = 1, 2, . . . , l. (4.1)

In order to overcome the difficulty of the case where λi(0) = 0 occurs for some i, we
will employ the same method as in Braaksma [3] and Ouchi [9].

We note that if I =
⋃p
i=1 Ii for some open intervals Ii (i = 1, 2, . . . , p) and if

u(t, x) has an analytic extension to SIi ×DR for each i = 1, 2, . . . , p, then u(t, x) has
an analytic extension to SI × DR. This shows that in the proof of Theorem 2.2 we
may suppose the condition: 0 < |I| < π/2k.

We write

SI(r] = {t ∈ R(C \ {0}) ; t ∈ I, 0 < |t| ≤ r},
Lθ(r) = {t ∈ R(C \ {0}) ; arg t = θ, 0 < |t| < r}.
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Definition 4.1.

(1) We denote by X (SI(r]×DR) the set of all functions f(t, x) which are continuous
on SI(r]×DR (⊂ Ct × CKx ) and holomorphic in x ∈ D◦R for any fixed t ∈ SI(r].

(2) We denote by X (Lθ(r)×DR) the set of all functions f(t, x) which are continuous
on Lθ(r)×DR (⊂ Ct ×CKx ) and holomorphic in x ∈ D◦R for any fixed t ∈ Lθ(r).
In the proof of Theorem 2.2 given below, we will start our discussion from the

assumption that u(t, x) is a holomorphic solution of equation (2.1) on SI(δ) × DR0

for some δ > 0. From now, we fix δ > 0. Then we take any r0 > 0 such that 0 < r0 < δ
and fix it. Thus,

δ and r0 are fixed so that 0 < r0 < δ. (4.2)

We first note that the meaning of the condition (4.1) lies in the following lemma.

Lemma 4.2.

(1) If (4.1) is satisfied, for r0 > 0 in (4.2) we can take σ > 0 and R1 > 0 so that we
have the estimate

|P (ktk, x)| ≥ σ(|t|k + 1)l on (SI \ SI(r0))×DR1 . (4.3)

(2) Therefore, if g(t, x) ∈ X (SI × DR1
) satisfies g(t, x) = 0 on SI(r) × DR1

for
some r ≥ r0, the equation P (ktk, x)w = g(t, x) has a unique solution w(t, x) ∈
X (SI×DR1) which satisfies w(t, x) = 0 on SI(r)×DR1 . Moreover, if |g(t, x)| ≤ A
holds on SI ×DR1 we have the estimate

|w(t, x)| ≤ A

σ(|t|k + 1)l
on SI ×DR1

.

4.1. PROOF OF THEOREM 2.2

In this subsection, we will present three propositions and one lemma without proofs,
and then we will show that if we admit these result, we can prove Theorem 2.2 in the
general case. The proofs of propositions and lemma will be given later.

The first proposition is as follows:

Proposition 4.3 (Extension as a continuous solution in t). Suppose the conditions
(A1)–(A6) and (4.1). Let κ > 0 be the one in (2.2). If u(t, x) ∈ X (SI(r] × DR0

)
is a solution of equation (2.1) on SI(r] × DR0

for some r ≥ r0 and if it satisfies
|u(t, x)| ≤ M0|t|µ−k on SI(r] ×DR0

for some M0 > 0, then u(t, x) has an extension
u∗(t, x) ∈ X (SI × DR) on SI × DR for some R > 0 which satisfies the following
properties: u∗(t, x) = u(t, x) on SI(r]×DR, u∗(t, x) is a solution of (2.1) on SI×DR,
and

|u∗(t, x)| ≤ M

(|t|k + 1)l
|t|µ−k exp(b|t|κ) on SI ×DR (4.4)

holds for some M > 0 and b > 0.

The next one is a result on the uniqueness of the solution.
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Proposition 4.4 (Uniqueness of the local solution). Suppose the conditions
(A1)–(A6) and (4.1). Let u1(t, x) ∈X (Lθ(r)×DR) and u2(t, x) ∈X (Lθ(r)×DR) be
two solutions of equation (2.1) on Lθ(r)×DR for some θ ∈ I and r > r0, and suppose
that they satisfy the estimates |ui(t, x)| ≤M0|t|µ−k on Lθ(r)×DR (i = 1, 2) for some
M0 > 0. Then, if u1(t, x) = u2(t, x) on Lθ(r1) × DR for some r1 with r0 ≤ r1 < r,
we have u1(t, x) = u2(t, x) on Lθ(r)×DR.

The third one is a result on the holomorphic extension in a local region. For t0
and r > 0 we write ∆t0(r) = {(tk + tk0)1/k ; t ∈ SI(r) }.

Proposition 4.5 (Holomorphic extension). Suppose the conditions (A1)–(A6) and
(4.1). Let u(t, x) ∈ X ((SI(r] ∪ Lθ(21/kr)) × DR) be a solution of equation (2.1)
on (SI(r] ∪ Lθ(21/kr)) × DR for some θ ∈ I and r > r0 which is holomorphic on
SI(r) × D◦R, and suppose that |u(t, x)| ≤ M0|t|µ−k holds on SI(r] × DR for some
M0 > 0. Set t0 = reiθ, and take any r1 > 0 (with r0 ≤ r1 < r). Then, u(t, x) is
extended holomorphically up to the domain ∆t0(r1)×Dρ for some 0 < ρ < R and its
extension is bounded on ∆t0(r1)×Dρ.

The last one is a general result on the holomorphy of functions.

Lemma 4.6 (On the holomorphy). Let S be an open subset of Ct. If u(t, x) ∈
X (S×DR) is holomorphic on S×D◦ρ for some 0 < ρ < R, then u(t, x) is holomorphic
on S ×D◦R.

In the first part of this section we have supposed the condition 0 < |I| < π/2k. By
this condition, we have SI(r)∩∆t0(r) = ∅. This fact can be verified by noticing that the
condition SI(r)∩∆t0(r) = ∅ is equivalent to the condition SkI(rk)∩(tk0 +SkI(r

k)) = ∅,
and by drawing pictures of SkI(rk), tk0 and tk0 + SkI(r

k).
By using these result, let us give a proof of Theorem 2.2.

Proof of Theorem 2.2. Let u(t, x) be a holomorphic solution of equation (2.1) on SI(δ)
×DR0 for some δ > 0, and suppose that |u(t, x)| ≤ M0|t|µ−k holds on SI(δ) × DR0

for some M0 > 0. We may suppose the conditions (4.2) and (4.3).
(1) Take any r > 0 (with r0 ≤ r < δ); then by Proposition 4.3 we see that u(t, x)

(restricted on SI(r] × DR0
) has an extension u∗(t, x) ∈ X (SI × DR) on SI × DR

for some 0 < R < R0 which satisfies the following properties: u∗(t, x) = u(t, x) on
SI(r] × DR, u∗(t, x) is a solution of (2.1) on SI × DR, and the estimate (4.4) holds
for some M > 0 and b > 0.

(2) Let us consider two solutions u(t, x) and u∗(t, x) on SI(δ) × DR. Then by
(1) we have u∗(t, x) = u(t, x) on SI(r] ×DR, and so by applying Proposition 4.4 we
have u∗(t, x) = u(t, x) on SI(δ) × DR. This shows that u∗(t, x) is holomorphic on
SI(δ)×D◦R.

(3) To show Theorem 2.2 it is enough to prove that this u∗(t, x) is holomorphic
on SI ×D◦R; by (2) we already know that u∗(t, x) is holomorphic on SI(δ)×D◦R.

(4) Take any θ ∈ I, r > 0, and r1 > 0 (with r0 ≤ r1 < r < δ and (rk+rk1 )1/k < δ),
and we consider the function u∗(t, x) on (SI(r]∪Lθ(21/kr))×DR. By (1) we know that
this u∗(t, x) is a solution of (2.1) on (SI(r]∪Lθ(21/kr))×DR and by Proposition 4.5 we
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see that u∗(t, x) (restricted on (SI(r]∪Lθ(21/kr))×DR) has a holomorphic extension
u1(t, x) on ∆t0(r1)×Dρ for some 0 < ρ < R which is bounded on ∆t0(r1)×Dρ.

Now, we set U = SI(δ) ∩∆t0(r1), and let us consider two functions u∗(t, x) and
u1(t, x) only on U × Dρ. Since these two functions are holomorphic on U × Dρ and
since u∗(t, x) = u1(t, x) on (U ∩Lθ(21/kr))×Dρ, by the unique continuation property
of holomorphic functions we have u∗(t, x) = u1(t, x) on U ×Dρ. Thus, if we set

u0(t, x) =

{
u∗(t, x), if (t, x) ∈ SI(δ)×Dρ,

u1(t, x), if (t, x) ∈ ∆t0(r1)×Dρ,

we have a holomorphic extension u0(t, x) of u∗(t, x) (restricted on SI(δ)×Dρ) to the
domain (SI(δ) ∪∆t0(r1))×Dρ.

(5) Take a sufficiently small ε > 0 such that the interval I0 = (θ− ε, θ+ ε) satisfies
SI0((rk + rk1 )1/k) ⊂ SI(δ) ∪ ∆t0(r1), and let us consider two functions u∗(t, x) and
u0(t, x) only on SI0((rk + rk1 )1/k)×Dρ. Since u0(t, x) = u∗(t, x) holds on SI0(δ)×Dρ,
we see that u0(t, x) is a holomorphic solution of (2.1) on SI0(δ) × Dρ, and so by
the unique continuation property of holomorphic functions we have the result that
u0(t, x) satisfies equation (2.1) also on the domain SI0((rk+rk1 )1/k)×Dρ. Therefore, by
Proposition 4.4 (with R replaced by ρ) we have the conclusion that u0(t, x) = u∗(t, x)
on SI0((rk + rk1 )1/k) × Dρ. Thus, we have proved that u∗(t, x) is holomorphic on
SI0((rk + rk1 )1/k)×Dρ.

(6) Since u∗(t, x) ∈ X (SI0((rk + rk1 )1/k) × DR) is known (by (1)), by applying
Lemma 4.6 to the conclusion of (5) we see that u∗(t, x) is holomorphic on SI0((rk +
rk1 )1/k)×D◦R.

(7) Since θ ∈ I and r0 ≤ r1 < r < δ (with (rk + rk1 )1/k < δ) are taken arbitrarily
in (4), we can conclude that u∗(t, x) is holomorphic on SI(21/kδ)×D◦R.

(8) If we replace δ by 21/kδ in (4)-(7), by the same argument as above we can prove
that u∗(t, x) is holomorphic on SI(22/kδ)×D◦R. By repeating the same argument, we
have the conclusion that u∗(t, x) is holomorphic on SI×D◦R. This proves Theorem 2.2.

Thus, to complete the proof of Theorem 2.2 it is sufficient to show Propositions
4.3, 4.4, 4.5 and Lemma 4.6. For λ = {λi,α}i+|α|≤m ∈ NN , we define |λ| and 〈λ〉l in
the same way as in Section 2. The following lemma is used in the discussion below.

Lemma 4.7.
(1) Let d > 0. For any p = 1, 2, . . . and |t| > 0 we have

φn+p(t; c) ≤ C0

(√2

d

)p/k
φn(t; c+ d) with C0 =

B(1/k, 1/k)√
2π

.

(2) Let aλ(t, x) ∈X (SI×DR) (|λ| ≥ 1) and wi,α(t, x) ∈X (SI×DR) (i+|α| ≤ m).
Suppose that there are Aλ > 0 (|λ| ≥ 1), pλ ∈ N∗ (|λ| ≥ 1), M > 0 and µ ∈ N∗ which
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satisfy ‖aλ(t)‖R ≤ Aλφpλ(t; c) on SI (|λ| ≥ 1), ‖wi,α(t)‖R ≤ Mφµ+k[i+|α|−l]+(t; c)

on SI (i+ |α| ≤ m), and
∑
|λ|≥1Aλt

pλX |λ| ∈ C{t,X}. Then, if we set

f(t, x) =
∑

|λ|≥1

aλ(t, x) ∗k
∏

i+|α|≤m

∗k[
wi,α

]∗kλi,α ,

we have the result that f(t, x) is well-defined as a function in the class X (SI ×DR)
and the estimate ‖f(t)‖R ≤ Fφµ(t; c+ d) holds on SI for some F > 0 and d > 0.

Proof. Let us show (1). We note that the maximum of f(x) = xae−dx (with a > 0)
on x > 0 is equal to (a/d)ae−a and so by Stirling’s formula we have

xae−dx ≤
(a
d

)a
e−a ≤

(1

d

)a√aΓ(a)√
2π

≤
(√2

d

)aΓ(a)√
2π
, x > 0,

where we used the fact that 2a ≥ a for a > 0. Hence, we have

φn+p(t; c) = φn(t; c+ d)× |t|pe−d|t|k Γ(n/k)

Γ((n+ p)/k)

≤ φn(t; c+ d)×
(√2

d

)p/kΓ(p/k)√
2π

Γ(n/k)

Γ((n+ p)/k)

≤ φn(t; c+ d)
(√2

d

)p/kB(1/k, 1/k)√
2π

.

Let us show (2). Let d > 0 be sufficiently large. Then we have
√

2 ≤ d. By the usual
argument and the result (1), we have

‖f(t)‖R ≤
∑

|λ|≥1

AλM
|λ|φpλ+k〈λ〉l+µ|λ|(t; c)

≤
∑

|λ|≥1

AλM
|λ| C0

(√2

d

)(pλ+k〈λ〉l+µ|λ|−µ)/k

φµ(t; c+ d)

≤ C0

(√2

d

)−µ/k ∑

|λ|≥1

Aλ

(√2

d

)pλ/k[
M
(√2

d

)µ/k]|λ|
φµ(t; c+ d).

In the above we have used the fact (
√

2/d)〈λ〉l ≤ 1. Since d > 0 is sufficiently large,
the above series is convergent. This proves (2).

4.2. PROOF OF PROPOSITION 4.3

Let u(t, x) ∈X (SI(r]×DR0) be a solution of equation (2.1) on SI(r]×DR0 for some
r ≥ r0 and suppose that |u(t, x)| ≤M0|t|µ−k holds on SI(r]×DR0

for some M0 > 0.
Set

uext(t, x) =

{
u(t, x), if (t, x) ∈ SI(r]×DR0 ,

u(rt/|t|, x), if (t, x) ∈ (SI \ SI(r])×DR0 .
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Then we have uext(t, x) ∈X (SI×DR0
) and uext(t, x) = u(t, x) on SI(r]×DR0

. Since
‖u(t)‖R0 ≤ M1φµ(t; c) holds on SI(r] for some M1 > 0, by Lemmas 3.5 and 3.6 we
have the following: for any 0 < R1 < R0 there is an M > 0 such that

‖Mi,α[∂αx uext](t)‖R1
≤Mφµ+k[i+|α|−l]+(t; c) on SI for any i+ |α| ≤ m. (4.5)

We set

fext(t, x) =−
∑

i+|α|≤m
ai,α(t, x) ∗k

(
Mi,α[∂αx uext]

)

−
∑

|ν|≥2

bν(t, x) ∗k
∏

i+|α|≤m

∗k(
Mi,α[∂αx uext]

)∗kνi,α + P (ktk, x)uext.

By Lemma 3.4, (4.5) and Lemma 4.7, we can see that fext(t, x) is well-defined as a
function in the class X (SI × DR1

) and that it satisfies the estimate ‖fext(t)‖R1
≤

F1φµ(t; c + d) on SI for some F1 > 0 and d > 0. Since uext(t, x) = u(t, x) holds
on SI(r] × DR0 and since u(t, x) is a solution of (2.1) on SI(r] × DR0 , we have
fext(t, x) = f(t, x) on SI(r]×DR1

: therefore, we see that fext(t, x) is holomorphic on
SI(r)×D◦R1

.
Now, let us look for an extension u∗(t, x) on SI ×DR1

as a solution of equation
(2.1) in the form:

u∗(t, x) = uext(t, x) + w(t, x), w(t, x) = 0 on SI(r)×DR1
.

The condition w(t, x) = 0 on SI(r)×DR1 guarantees that u∗(t, x) is an extension of
u(t, x). Since u∗(t, x) must be a solution of (2.1), the unknown function w(t, x) must
satisfy the following equation:

P (ktk, x)w = f(t, x)− fext(t, x) +
∑

i+|α|≤m
ai,α(t, x) ∗k

(
Mi,α[∂αxw]

)

+
∑

|ν|≥2

bν(t, x) ∗k
[ ∏

i+|α|≤m

∗k(
Mi,α[∂αx (uext + w)]

)∗kνi,α

−
∏

i+|α|≤m

∗k(
Mi,α[∂αx uext]

)∗kνi,α
]
. (4.6)

Lemma 4.8. Let X = {Xi,α}i+|α|≤m ∈ CN , and let us consider

F (X) =
∑

|λ|≥1

fλX
λ ∈ C{X}

with λ = {λi,α}i+|α|≤m ∈ NN , |λ| =
∑
i+|α|≤m λi,α and Xλ =

∏
i+|α|≤m(Xi,α)λi,α .

Then, we have the formula:

F (X + Y )− F (X) =
∑

|ν|≥1

[∑

λ<ν

λ!

ν!(λ− ν)!
fλX

λ−ν
]
Y ν ,
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where {λi,α}i+|α|≤m < {νi,α}i+|α|≤m means that λi,α ≥ νi,α holds for all (i, α) with
i+ |α| ≤ m.

Therefore, by setting

g(t, x) = f(t, x)− fext(t, x),

hi,α(t, x) =
∑

|λ|≥2,λi,α>0

λi,αbλ(t, x) ∗k
[ ∏

(j,β) 6=(i,α)

∗k (
Mj,β [∂βxuext]

)∗kλj,β
]

∗k
(
Mi,α[∂αx uext]

)∗k(λi,α−1)
,

cν(t, x) =
∑

|λ|≥2,λ<ν

λ!

ν!(λ− ν)!
bλ(t, x) ∗k

∏

i+|α|≤m

∗k (
Mi,α[∂αx uext]

)∗k(λi,α−νi,α)
,

equation (4.6) is expressed in the form

P (ktk, x)w = g(t, x) +
∑

i+|α|≤m
(ai,α(t, x) + hi,α(t, x)) ∗k

(
Mi,α[∂αxw]

)

+
∑

|ν|≥2

cν(t, x) ∗k
∏

i+|α|≤m

∗k(
Mi,α[∂αxw]

)∗kνi,α . (4.7)

This is just the same type of equation as (2.1), but in this case we have the condition
g(t, x) = 0 on SI(r]×DR1

, and so in the construction of a formal solution on SI×DR1

(under the condition w(t, x) = 0 on SI(r)×DR1
) we can use (2) of Lemma 4.2.

By the definition, we have g(t, x) ∈ X (SI × DR1
), g(t, x) = 0 on SI(r) × DR1

,
hi,α(t, x) ∈ X (SI × DR1

) ∩ O(SI(r) × DR1
) (i + |α| ≤ m), and cν(t, x) ∈ X (SI ×

DR1) ∩ O(SI(r) ×DR1) (|ν| ≥ 2). Since g(t, x) = 0 on SI(r] ×DR1 , for any µ1 ≥ µ
we can find a constant G > 0 such that ‖g(t)‖R1 ≤ Gφµ1(t; c+ d) holds on SI ×DR1 .
Moreover, if we take d > 0 sufficiently large, by Lemma 3.4, (4.5) and Lemma 4.7 we
can see that

‖hi,α(t)‖R1
≤ Hi,αφγi,α(t; c+ d) on SI (i+ |α| ≤ m),

‖cν(t)‖R1
≤ Cνφγν (t; c+ d) on SI (|ν| ≥ 2),

∑

|ν|≥2

Cνt
γνX |ν| ∈ C{t,X}

hold for some Hi,α > 0 (i+ |α| ≤ m) and Cν > 0 (|ν| ≥ 2), where

γi,α = min
{
qλ + k〈λ〉l − k[i+ |α| − l]+ + µ(|λ| − 1) ;

bλ(t, x) 6≡ 0, |λ| ≥ 2, λi,α > 0
}
,

γν = min
{
qλ + k〈λ− ν〉l + µ(|λ| − |ν|) ; bλ(t, x) 6≡ 0, λ < ν

}
.

Under these situation, we set

∆h = {(i, α) ∈ N× NK ; l + 1 ≤ i+ |α| ≤ m,hi,α(t, x) 6≡ 0},
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∆c = {ν ∈ NN ; |ν| ≥ 2,mν ≥ l + 1, cν(t, x) 6≡ 0},

sh = 1 + max

[
0, max

(i,α)∈∆h

( i+ |α| − l
γi,α + k(i+ |α| − l)

)]
,

sc = 1 + max

[
0, max

ν∈∆c

( mν − l
γν + k〈ν〉l + µ1(|ν| − 1)

)]
.

Then, we have the following lemma.

Lemma 4.9. As before, we set s0 = max{sa, sb}. If µ1 is sufficiently large, we have
s0 ≥ max{sa, sh, sc}.
Proof. If s0 = 1, we may assume that m ≤ l. In this case we have sh = 1 and sc = 1,
and so we have the result.

Let us show the case s0 > 1. By the definition, we have s0 ≥ sa. For any (i, α) ∈ ∆h

we have γi,α = qλ + k〈λ〉l − k(i+ |α| − l) + µ(|λ| − 1) for some λ ∈ ∆b, and so

i+ |α| − l
γi,α + k(i+ |α| − l) =

i+ |α| − l
qλ + k〈λ〉l + µ(|λ| − 1)

≤ mλ − l
qλ + k〈λ〉l + µ(|λ| − 1)

≤ sb − 1 ≤ s0 − 1.

This shows that sh ≤ s0 holds. Moreover, for any ν ∈ ∆c we have

mν − l
γν + k〈ν〉l + µ1(|ν| − 1)

≤ m− l
µ1

< s0 − 1

if µ1 > (m − l)/(s0 − 1) holds. Therefore, if µ1 > 0 is sufficiently large, we have
sc ≤ s0. This proves Lemma 4.9.

Thus, by (2) of Lemma 4.2 and by the same argument as in Subsections 3.1–3.4
we can show the following result:

Proposition 4.10. Under the above situation, equation (4.7) has a solution w(t, x)
∈X (SI ×DR) for some R > 0 which satisfies w(t, x) = 0 on SI(r)×DR and

|w(t, x)| ≤ M

(|t|k + 1)l
|t|µ1−k exp(b|t|κ) on SI ×DR

for some M > 0 and b > 0.

By setting u∗(t, x) = uext(t, x) + w(t, x) we have an extension of u(t, x). This
proves Proposition 4.3.

4.3. PROOF OF PROPOSITION 4.4

Let u1(t, x) ∈ X (Lθ(r) × DR) and u2(t, x) ∈ X (Lθ(r) × DR) be two solutions of
equation (2.1) on Lθ(r) × DR for some θ ∈ I and r > r0 satisfying the estimates
|ui(t, x)| ≤ M0|t|µ−k on Lθ(r) × DR (i = 1, 2) for some M0 > 0, and suppose that
u1(t, x) = u2(t, x) holds on Lθ(r1)×DR for some r1 with r0 ≤ r1 < r.
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We set u(t, x) = u1(t, x) − u2(t, x): as we have already seen in Subsection 3.5,
u(t, x) satisfies a linear convolution partial differential equation (similar to (3.19)):

P (ktk, x)u =
∑

i+|α|≤m
γi,α(t, x) ∗k

(
Mi,α[∂αx u]

)

for some suitable γi,α(t, x) ∈X (Lθ(r)×D◦R). Since u(t, x) = 0 holds on Lθ(r1)×DR,
we can use (2) of Lemma 4.2. Thus, by the same argument as in the proof of The-
orem 3.11 we can show that u(t, x) = 0 on Lθ(r) × DR1 for any 0 < R1 < R. This
proves Proposition 4.4.

4.4. NEW CONVOLUTION ON SI(R] ∪∆T0
(R)

Let r > 0, θ ∈ I and t0 = reiθ. We denote by H(SI(r]∪∆t0(r)) the set of all functions
f(t) which are continuous on SI(r]∪∆t0(r) and holomorphic in SI(r)∪∆t0(r). In order
to prove the analytic continuation in a local region, Braaksma [3] and Ouchi [9] have
used a new convolution (f ∗̃kg)(t) of two functions f(t) and g(t) in H(SI(r]∪∆t0(r)).
Let us recall its definition.

The difficulty lies in the fact that the usual convolution (f ∗k g)(t) is well-defined
for t ∈ SI(r]∪Lθ(21/kr) but not for t ∈ ∆t0(r)\Lθ(21/kr). The situation is as follows.
For t ∈ Lθ(21/kr) with |t| > r, the convolution (f ∗k g)(t) is given by

(f ∗k g)(t) =

t0∫

0

f(τ)g((tk − τk)1/k)dτk +

t∫

t0

f(τ)g((tk − τk)1/k)dτk.

If we set xk = tk − τk in the first term of the right-hand side, by the condition
(tk − tk0)1/k ∈ Lθ(r) we have

t0∫

0

f(τ)g((tk − τk)1/k)dτk =

t∫

(tk−tk0 )1/k

f((tk − xk)1/k)g(x)dxk

=

t0∫

(tk−tk0 )1/k

f((tk − xk)1/k)g(x)dxk +

t∫

t0

f((tk − xk)1/k)g(x)dxk.

Therefore, for t ∈ Lθ(21/kr) with |t| > r, (f ∗k g)(t) is written in the form

(f ∗k g)(t) =

t0∫

(tk−tk0 )1/k

f((tk − τk)1/k)g(τ)dτk

+

t∫

t0

f((tk − τk)1/k)g(τ)dτk +

t∫

t0

f(τ)g((tk − τk)1/k)dτk

= I1 + I2 + I3.

(4.8)
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We write Lθ[t0, t] = {z ∈ Lθ(21/kr) ; |t0| ≤ |z| ≤ |t|}, etc. Then, in the above integral
formula (4.8) we see: in I1 we have

(tk − τk)1/k ∈ Lθ[(tk − tk0)1/k, t0] and τ ∈ Lθ[(tk − tk0)1/k, t0],

in I2 we have

(tk − τk)1/k ∈ Lθ[0, (tk − tk0)1/k] and τ ∈ Lθ[t0, t],

and in I3 we have τ ∈ Lθ[t0, t] and (tk − τk)1/k ∈ Lθ[0, (tk − tk0)1/k].
If we consider the right-hand side of (4.8) for t ∈ ∆t0(r), the variables of the

integrants move in the following way: in I1, the variable of f moves like t0 −→
(tk − t0)1/k in SI(r) and the variable of g moves like (tk − t0)1/k −→ t0 in SI(r); in
I2, the variable of f moves like (tk− t0)1/k −→ 0 in SI(r) and the variable of g moves
like t0 −→ t in ∆t0(r); in I3, the variable of f moves like t0 −→ t in ∆t0(r) and the
variable of g moves like (tk − t0)1/k −→ 0 in SI(r).

Thus, if we use the formula (4.8) as a new convolution of f(t) and g(t) for t ∈ ∆t0(r)
we have a natural generalization of the convolution.

Definition 4.11. For f(t) ∈ H(SI(r]∪∆t0(r)) and g(t) ∈ H(SI(r]∪∆t0(r)), we define
a new convolution f ∗̃kg on SI(r]∪∆t0(r) in the following way: if t ∈ SI(r]∪Lθ(21/kr),
we define the convolution (f ∗̃kg)(t) by the usual formula, and if t ∈ ∆t0(r), we define
the convolution (f ∗̃kg)(t) by the right-hand side of (4.8).

In order to estimate the new convolution (f ∗̃kg)(t) on SI(r]∪∆t0(r), the following
function is very useful. We set

h(t) = (|tk − tk0 |+ |t0|k)1/k, t ∈ ∆t0(r).

Lemma 4.12.

(1) If 0 < |I| < π/2k and θ ∈ I hold, we have

2−1/kh(t) ≤ |t| ≤ h(t), t ∈ ∆t0(r).

(2) Let f(t) ∈ H(SI(r] ∪ ∆t0(r)) and g(t) ∈ H(SI(r] ∪ ∆t0(r)). Then we have
(f ∗̃kg)(t) ∈ H(SI(r] ∪ ∆t0(r)). If f(t) = 0 and g(t) = 0 hold on SI(r), we
have (f ∗̃kg)(t) = 0 on SI(r] ∪∆t0(r).

(3) Let f(t) ∈ H(SI(r]∪∆t0(r)) and g(t) ∈ H(SI(r]∪∆t0(r)). Suppose that g(t) = 0
holds on SI(r) and that

|f(t)| ≤ A

Γ(α/k)
|t|α−k on SI(r],

|g(t)| ≤ B

Γ(β/k)
h(t)β−k on ∆t0(r)

for some A > 0, B > 0, α > 0 and β > 0: then we have (f ∗̃kg)(t) = 0 on SI(r]
and

|(f ∗̃kg)(t)| ≤ AB

Γ((α+ β)/k)
h(t)α+β−k on ∆t0(r). (4.9)
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Proof. Let us show (1). Let t ∈ ∆t0(r). We have |t| > r = |t0|. Since tk− tk0 ∈ SkI(rk),
we have |tk − tk0 | < rk. Therefore, we see that

2|t|k > rk + rk > |t0|k + |tk − tk0 | = h(t)k.

This proves the first inequality. The second inequality comes from

|t|k = |tk| ≤ |tk − tk0 |+ |t0|k = h(t)k.

The part (2) is clear from the definition. (3) is already proved in [9, Lemma 6.4],
but for readers’ convenience, we give here a proof of (4.9).

Since the condition g(t) = 0 on SI(r) is supposed, by (4.8) we have

(f ∗̃kg)(t) =

t∫

t0

f((tk − τk)1/k)g(τ)dτk on ∆t0(r).

Let t ∈ ∆t0(r). By setting x = (τk − tk0)1/k, by integrating in x from 0 to (tk − tk0)1/k

and by using the condition

h((tk0 + xk)1/k) = (|(tk0 + xk)− tk0 |+ |t0|k)1/k = (|x|k + |t0|k)1/k

we have

|(f ∗̃kg)(t)|

=

∣∣∣∣∣

(tk−tk0 )1/k∫

0

f((tk − tk0 − xk)1/k)g((tk0 + xk)1/k)dxk

∣∣∣∣∣

≤ A

Γ(α/k)

B

Γ(β/k)

|tk−tk0 |1/k∫

0

(|tk − tk0 | − ρk)α/k−1(ρk + |t0|k)β/k−1dρk.

In addition, by setting y = ρk + |t0|k and then by setting y = (|tk − tk0 | + |t0|k)η we
have

|tk−tk0 |1/k∫

0

(|tk − tk0 | − ρk)α/k−1(ρk + |t0|k)β/k−1dρk

≤
|tk−tk0 |+|t0|k∫

0

(|tk − tk0 |+ |t0|k − y)α/k−1yβ/k−1dy

= (|tk − tk0 |+ |t0|k)α/k+β/k−1

1∫

0

(1− η)α/k−1ηβ/k−1dη

= h(t)α+β−kB(α/k, β/k) = h(t)α+β−kΓ(α/k)Γ(β/k)

Γ((α+ β)/k)
.

This proves (4.9).



766 Hidetoshi Tahara

More generally, if we take 0 < r1 < r, we can define the new convolution (f ∗̃kg)(t)
on SI(r) ∪∆t0(r1) in the same way, and we have the same results as in Lemma 4.12.
In addition, we have the following lemma.

Lemma 4.13. Let r > 0, θ ∈ I, t0 = reiθ and 0 < r1 < r. Let f(t) ∈ H(SI(r] ∪
∆t0(r1)) and g(t) ∈ H(SI(r] ∪∆t0(r1)). If

|f(t)| ≤ A

Γ(α/k)
|t|α−k on SI(r], |f(t)| ≤ A

Γ(α/k)
h(t)α−k on ∆t0(r1),

|g(t)| ≤ B

Γ(β/k)
|t|β−k on SI(r], |g(t)| ≤ B

Γ(β/k)
h(t)β−k on ∆t0(r1)

hold for some A > 0, B > 0, α > 0 and β > 0, then we see that (f ∗̃kg)(t) ∈
H(SI(r] ∪∆t0(r1)) and satisfies the estimate

|(f ∗̃kg)(t)| ≤





AB

Γ((α+ β)/k)
|t|α+β−k on SI(r],

(
2 +

rk + rk1
rk − rk1

) AB

Γ((α+ β)/k)
h(t)α+β−k on ∆t0(r1).

(4.10)

Proof. In the case t ∈ SI(r], the new convolution is the same as the usual convolution,
and so the first inequality of (4.10) follows from Lemma 3.4. Let us show the second
inequality of (4.10).

Take any t ∈ ∆t0(r1) and fix it. We have |t0|k = rk > rk1 > |tk−tk0 |, |t0|k−|tk−tk0 | >
rk − rk1 > 0 and h(t) ≤ (rk + rk1 )1/k. By the definition we have

(f ∗k g)(t) =

t0∫

(tk−tk0 )1/k

f((tk − τk)1/k)g(τ)dτk

+

t∫

t0

f((tk − τk)1/k)g(τ)dτk +

t∫

t0

f(τ)g((tk − τk)1/k)dτk

= I1 + I2 + I3.

The parts I2 and I3 are estimated in the same way as (4.9) and we have

|Ii| ≤
AB

Γ((α+ β)/k)
h(t)α+β−k on ∆t0(r1), i = 2, 3. (4.11)

Let us estimate I1. We take the integration route so that τ = (ρtk0 +(1−ρ)(tk−tk0))1/k

with ρ : 0 −→ 1. Then, we have (tk − τk)1/k ∈ SI(r] and τ ∈ SI(r], and

|f(tk − τk)1/k)| ≤ A|tk − τk|α/k−1

Γ(α/k)
≤ A

Γ(α/k)

(
(1− ρ)|t0|k + ρ|tk − τk|

)α/k−1
,

|g(τ)| ≤ B|τk|β/k−1

Γ(β/k)
≤ B

Γ(β/k)

(
ρ|t0|k + (1− ρ)|tk − τk|

)β/k−1
.
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Since dτk = (tk0 − (tk − tk0))dρ, we have

|dτk| = |tk0 − (tk − tk0)|dρ ≤ (|t0|k + |tk − tk0 |)dρ ≤ (rk + rk1 )dρ.

Therefore, we have

|I1| ≤
AB(rk + rk1 )

Γ(α/k)Γ(β/k)

1∫

0

(
(1− ρ)|t0|k + ρ|tk − tk0 |

)α/k−1

×
(
ρ|t0|k + (1− ρ)|tk − tk0 |

)β/k−1
dρ.

Here, we set y = ρ|t0|k + (1− ρ)|tk − tk0 |. Then we have

dy = (|t0|k − |tk − tk0 |)dρ ≥ (rk − rk1 )dρ,

and so

|I1| ≤
AB(rk + rk1 )

Γ(α/k)Γ(β/k)

|t0|k∫

|tk−tk0 |

(|tk − tk0 |+ |t0|k − y)α/k−1yβ/k−1 dy

(rk − rk1 )

≤ AB(rk + rk1 )

Γ(α/k)Γ(β/k)

|tk−tk0 |+|t0|k∫

0

(|tk − tk0 |+ |t0|k − y)α/k−1yβ/k−1 dy

(rk − rk1 )

=
AB(rk + rk1 )

(rk − rk1 )Γ(α/k)Γ(β/k)
(|tk − tk0 |+ |t0|k)α/k+β/k−1B(α/k, β/k)

=
(rk + rk1 )

(rk − rk1 )

AB

Γ((α+ β)/k)
h(t)α+β−k. (4.12)

By (4.11) and (4.12), we have the second inequality of (4.10).

Thus, in the case 0 < r1 < r (being fixed), by setting C1 = 2 + (rk + rk1 )/(rk− rk1 )
and

ψa(t) =





1

C1

|t|a−k
Γ(a/k)

on SI(r],

1

C1

h(t)a−k

Γ(a/k)
on ∆t0(r1)

for a > 0, we have the following result.

Corollary 4.14. Let r > 0, θ ∈ I, t0 = reiθ and 0 < r1 < r. Let f(t) ∈ H(SI(r] ∪
∆t0(r1)) and g(t) ∈ H(SI(r] ∪∆t0(r1)). If |f(t)| ≤ Aψa(t) and |g(t)| ≤ Bψb(t) hold
on SI(r] ∪ ∆t0(r1) for A > 0, a > 0, B > 0 and b > 0, then we have |(f ∗̃kg)(t)| ≤
ABψa+b(t) on SI(r] ∪∆t0(r1).
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In equation (2.1), estimates in the assumptions are given in the form

‖a(t)‖ρ ≤
A

Γ(n/k)
|t|n−k exp(c|t|k) on SI .

By applying (1) of Lemma 4.12 to this estimate we have ‖a(t)‖ρ ≤ A1ψn(t) on
SI(r] ∪ ∆t0(r1) with A1 = C1HA exp(2crk) and H = max{1, 21−n/k}. Conversely,
the estimate ‖a(t)‖ρ ≤ A1ψn(t) on SI(r] ∪ ∆t0(r1) implies the estimate ‖a(t)‖ρ ≤
(H/C1)A1|t|n−k/Γ(n/k) on SI(r] ∪∆t0(r1).

Thus, we see that almost all the arguments in the usual case work also for the new
convolution if we use ψn(t) (n = 1, 2, . . .) instead of φn(t; c) (n = 1, 2, . . .).

4.5. PROOF OF PROPOSITION 4.5

Let r > 0 and R > 0. We denote by H((SI(r]∪∆t0(r))×DR) the set of all functions
f(t, x) belonging to X ((SI(r] ∪ ∆t0(r)) × DR) that are holomorphic in (SI(r) ∪
∆t0(r))×D◦R.

For two functions f(t, x) and g(t, x) in H((SI(r] ∪ ∆t0(r)) × DR), we define the
new convolution (f ∗̃kg)(t, x) with respect to t in the same way as in Definition 4.11,
regarding x as a parameter.

In this section, we will prove Proposition 4.5 by considering the following
new-convolution equation

P (ktk, x)u = f(t, x) +
∑

i+|α|≤m
ai,α(t, x)∗̃k(Mi,α[∂αx u])

+
∑

|ν|≥2

bν(t, x)∗̃k
∏

i+|α|≤m

∗̃k(
Mi,α[∂αx u]

)∗̃kνi,α (4.13)

on (SI(r]∪∆t0(r))×DR. We note that this is the same as (2.1) on (SI(r]∪Lθ(21/kr))×
DR, but on ∆t0(r)×DR we are using the new convolution ∗̃k.
Proof of Proposition 4.5. Let u(t, x) ∈ X ((SI(r] ∪ Lθ(21/kr)) × DR) be a solution
of equation (2.1) on (SI(r] ∪ Lθ(21/kr)) × DR for some θ ∈ I and r > r0 which is
holomorphic on SI(r)×D◦R, and suppose that |u(t, x)| ≤M0|t|µ−k holds on SI(r]×DR

for some M0 > 0.
We set t0 = reiθ, take any r1 > 0 (with r0 ≤ r1 < r), and set

uθ(t, x) =

{
u(t, x), if (t, x) ∈ SI(r]×DR,

u(t0, x), if (t, x) ∈ ∆t0(r1)×DR.

We have uθ(t, x) ∈ H((SI(r] ∪∆t0(r1))×DR) and uθ(t, x) = u(t, x) on SI(r]×DR.
Take an R1 > 0 sufficiently small. Let us look for an extension u∗(t, x) on (SI(r]∪

∆t0(r1))×DR1
as a solution of equation (4.13) in the form:

u∗(t, x) = uθ(t, x) + w(t, x), w(t, x) = 0 on SI(r)×DR1
.
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Then, by the same calculation as in (4.6) and (4.7), equation (4.13) is reduced to the
following new-convolution equation with respect to the unknown function w:

P (ktk, x)w = g(t, x) +
∑

i+|α|≤m
(ai,α(t, x) + hi,α(t, x))∗̃k

(
Mi,α[∂αxw]

)

+
∑

|ν|≥2

cν(t, x)∗̃k
∏

i+|α|≤m

∗̃k(
Mi,α[∂αxw]

)∗̃kνi,α (4.14)

on (SI(r]∪∆t0(r1))×DR1
, where g(t, x) ∈ H((SI(r]∪∆t0(r1))×DR1

) with g(t, x) = 0
on SI(r) × DR1 , and hi,α(t, x) (i + |α| ≤ m) and cν(t, x) (|ν| ≥ 2) are given by the
same formulas as in (4.7) (with uext(t, x) replaced by uθ(t, x)).

Since w(t, x) = 0 on SI(r) × DR1
is supposed, by (2) of Lemma 4.12 we have

(w∗̃kw)(t) = 0 on (SI(r]∪∆t0(r1))×DR1
. Hence, under the condition w(t, x) = 0 on

SI(r)×DR1
, equation (4.14) is reduced to the linear equation

P (ktk, x)w = g(t, x) +
∑

i+|α|≤m
(ai,α(t, x) + hi,α(t, x))∗̃k

(
Mi,α[∂αxw]

)
. (4.15)

This equation is much easier than (4.14).
Thus, by the same argument as in the proof of Proposition 4.10 and by using

Corollary 4.14 we have the following proposition.

Proposition 4.15. Under the above situation, equation (4.15) has a solution w(t, x)
∈ H((SI(r] ∪∆t0(r1))×Dρ) for some ρ > 0 (0 < ρ < R1) which satisfies w(t, x) = 0
on SI(r)×Dρ, and

‖w(t)‖ρ ≤Mψµ1
(t) on SI(r] ∪∆t0(r1)

for some µ1 > 0 and M > 0.

Now, let us complete the proof of Proposition 4.5. We set

u∗(t, x) = uθ(t, x) + w(t, x) on (SI(r] ∪∆t0(r1))×Dρ.

Then, we see that u∗(t, x) ∈ H((SI(r]∪∆t0(r1))×Dρ), u∗(t, x) = u(t, x) on SI(r)×Dρ,
and u∗(t, x) is a solution of equation (4.13). Thus, to complete the proof of Proposition
4.5 it is enough to show that u∗(t, x) = u(t, x) holds on Lθ((rk + rk1 )1/k)×Dρ. This
is verified as follows.

Since (4.13) is the same as (2.1) on Lθ((r
k + rk1 )1/k) × Dρ, two functions

u∗(t, x) and u(t, x) are solutions of (2.1) on Lθ((r
k + rk1 )1/k) × Dρ and they satisfy

u∗(t, x) = u(t, x) on Lθ(r)×Dρ. Hence, by Proposition 4.4 we have u∗(t, x) = u(t, x)
on Lθ((rk + rk1 )1/k)×Dρ.

4.6. PROOF OF LEMMA 4.6

Let S be an open subset of Ct, and let u(t, x) ∈X (S ×DR). Suppose that u(t, x) is
holomorphic on S ×D◦ρ for some 0 < ρ < R. Let us show that u(t, x) is holomorphic
on S ×D◦R.
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Since u(t, x) ∈ X (S × DR) is supposed, u(t, x) is holomorphic with respect to
x ∈ D◦R, and by Taylor expansion in x we have the expression

u(t, x) =
∑

|α|≥0

uα(t)xα, t ∈ S. (4.16)

Since u(t, x) is holomorphic on S×D◦ρ, we can regard this as Taylor expansion of the
holomorphic function on S ×D◦ρ and we have the condition that uα(t) (|α| ≥ 0) are
holomorphic functions on S.

Take any K b S and 0 < R1 < R; we have |u(t, x)| ≤ M on K ×DR1
for some

M > 0 and by Cauchy’s inequality we have the estimates |uα(t)| ≤ M/R
|α|
1 on K.

Then, the series (4.16) is uniformly convergent on any compact subset of K ×D◦R1
.

Since uα(t) (|α| ≥ 0) are holomorphic functions on S, this shows that u(t, x) is
holomorphic on K◦ ×D◦R1

.
SinceK and R1 are taken arbitrarily, we have the result that u(t, x) is holomorphic

on S ×D◦R.

5. A GENERALIZATION

In the previous sections, we have proved Theorem 2.2 under the condition that k > 0,
µ > 0, pi,α > 0 (i+ |α| ≤ m) and qν > 0 (|ν| ≥ 2) are integers. In this section we will
generalize Theorem 2.2 to the case where k > 0, µ > 0, pi,α > 0 (i + |α| ≤ m) and
qν > 0 (|ν| ≥ 2) are not necessarily integers.

As before, we consider the equation

P (ktk, x)u = f(t, x) +
∑

i+|α|≤m
ai,α(t, x) ∗k (Mi,α[∂αx u])

+
∑

|ν|≥2

bν(t, x) ∗k
∏

i+|α|≤m

∗k(
Mi,α[∂αx u]

)∗kνi,α . (5.1)

We suppose the conditions (A2), (A3), (A4) and the following:

(A∗1) k > 0 is a real number, and 0 < |I| < 2π/k;
(A∗5) there are positive numbers µ > 0, pi,α > 0 (i + |α| ≤ m) and qν > 0 (|ν| ≥ 2)

such that the estimates

|f(t, x)| ≤ F

Γ(µ/k)
|t|µ−k exp(c|t|k) on SI ×DR0

,

|ai,α(t, x)| ≤ Ai,α
Γ(pi,α/k)

|t|pi,α−k exp(c|t|k) on SI ×DR0 (i+ |α| ≤ m),

|bν(t, x)| ≤ Bν
Γ(qν/k)

|t|qν−k exp(c|t|k) on SI ×DR0
(|ν| ≥ 2)

hold for some c > 0, F ≥ 0, Ai,α ≥ 0 (i+ |α| ≤ m) and Bν ≥ 0 (|ν| ≥ 2);
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(A∗6) moreover, there is a d > 0 such that k/d ∈ N, µ/d ∈ N, pi,α/d ∈ N (i+ |α| ≤ m),
qν/d ∈ N (|ν| ≥ 2), and that the sum

∑

|ν|≥2

Bνt
qν/dX |ν|

is convergent in a neighborhood of (t,X) = (0, 0) ∈ C2.

Under these assumptions, we define sa, sb, s0 and κ > 0 by the same formulas as
in Section 2. Then, we obtain the following result.

Theorem 5.1. Suppose the conditions (A∗1), (A2), (A3), (A4), (A∗5) and (A∗6). Let
λ1(x), . . . , λl(x) be the roots of P (λ, x) = 0, and assume that

λi(0) = 0 or λi(0) ∈ C \ π(SkI) for i = 1, 2, . . . , l.

If u(t, x) is a holomorphic solution of equation (5.1) on SI(δ)×DR0 for some δ > 0,
and if it satisfies |u(t, x)| ≤ M0|t|µ−k on SI(δ)×DR0 for some M0 > 0, then u(t, x)
has an analytic continuation u∗(t, x) on SI ×DR for some 0 < R < R0 such that

|u∗(t, x)| ≤ M

(|t|k + 1)l
|t|µ−k exp(b|t|κ) on SI ×DR

holds for some M > 0 and b > 0.

As is seen in the proof of Theorem 2.2, the essential part of the proof lies in the
construction of a solution on SI × DR. In the present case, the following is the key
proposition:

Proposition 5.2. Suppose the condition

λ1(0), . . . , λl(0) ∈ C \ π(SkI). (5.2)

Then, equation (5.1) has a formal solution

u(t, x) =
∑

n≥µ/d
un(t, x)

(we note that µ/d is a positive integer) which satisfies the following properties:
(1) un(t, x) (n ≥ µ/d) are holomorphic functions on SI ×Dρ for some ρ > 0;
(2) there are C > 0 and h > 0 such that

|un(t, x)| ≤ Chn

(|t|k + 1)l
n!d(s−1)

Γ(dn/k)
|t|dn−k exp(c|t|k) on SI ×Dρ

holds for any n ≥ µ/d and s ≥ max{sa, sb}.
We note that if we set

k1 = k/d, µ1 = µ/d, pi,α,1 = pi,α/d and qν,1 = qν/d
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these k1, µ1, pi,α,1 (i+ |α| ≤ m) and qν,1 (|ν| ≥ 2) are positive integers. We set

sa,1 = 1 + max

[
0, max

(i,α)∈∆a

( i+ |α| − l
pi,α,1 + k1(i+ |α| − l)

)]
,

sb,1 = 1 + max

[
0, max

ν∈∆b

( mν − l
qν,1 + k1〈ν〉l + µ1(|ν| − 1)

)]
.

Then, we have sa,1−1 = d(sa−1) and sb,1−1 = d(sb−1). Therefore, Proposition 5.2
is written as follows.

Proposition 5.3. Suppose the condition (5.2). Then, equation (5.1) has a formal
solution

u(t, x) =
∑

n≥µ1

un(t, x) (5.3)

which satisfies the following properties:
(1) un(t, x) (n ≥ µ1) are holomorphic functions on SI(r)×Dρ for some ρ > 0;
(2) there are C > 0 and h > 0 such that

|un(t, x)| ≤ Chn

(|t|k + 1)l
n!s1−1

Γ(dn/k)
|t|dn−k exp(c|t|k) on SI(r)×Dρ

holds for any n ≥ µ1 and s1 ≥ max{sa,1, sb,1}.
Proof. The formal solution (5.3) is determined by a solution of the following recurrent
formulas:

P (ktk, x)uµ1
= f(t, x),

and for n ≥ µ1 + 1

P (ktk, x)un =
∑

i+|α|≤m
ai,α(t, x) ∗k (Mi,α[∂αx un−pi,α,1−k1[i+|α|−l]+ ])

+
∑

2≤|ν|≤n−qν,1

∑

qν,1+|n(ν)|
+k1〈ν〉l=n

bν(t, x) ∗k
∏

i+|α|≤m

∗k νi,α∏

j=1

∗k(
Mi,α[∂αx uni,α(j)]

)
.

If we use the functions

φn(t; c) =
|t|dn−k

Γ(dn/k)
exp(c|t|k), n = 1, 2, . . . ,

the part (2) can be proved in the same way as in the proof of Proposition 3.3.

Thus, by modifying the arguments in Sections 3 and 4 suitably we can give a proof
of Theorem 5.1. We may omit the details.
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