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Abstract. The paper considers a problem of analytic continuation of solutions of some
nonlinear convolution partial differential equations which naturally appear in the summa-
bility theory of formal solutions of nonlinear partial differential equations. Under a suitable
assumption it is proved that any local holomorphic solution has an analytic extension to a
certain sector and its extension has exponential growth when the variable goes to infinity in
the sector.
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1. INTRODUCTION

The multisummability of formal solutions of general ordinary differential equations
was first proved by Braaksma [3]; different proofs were given by many authors (see
Balser [1,2], Ramis-Sibuya [10] and their references). In the proof of Braaksma [3],
the key point of the proof is that he proved an analytic continuation property of a
solution of the convolution equation which is obtained by Borel transformation of the
ordinary differential equation.

In the case of partial differential equations, the way of proof by Braaksma was
followed by Ouchi [8,9], Tahara-Yamazawa [11] and Luo-Chen-Zhang [6] in treating
various types of partial differential equations. But still there are many types of partial
differential equations which have formal solutions but the summability has not been
proved yet.

In this situation, it will be worthy to study the analytic continuation problem
itself for convolution partial differential equations, apart from the application to the
summability theory.
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Thus, in this paper we consider the following problem:

Problem 1.1. Find such a class of convolution partial differential equations that
a local holomorphic solution has an analytic extension to a suitable sector and its
extension has exponential growth in the sector when variable goes to infinity.

As is mentioned above, the arguments in [6, 8,9, 11] have given some answers to this
problem. In this paper, we will introduce a new class of nonlinear convolution partial
differential equations which has a nice application: the typical feature of this class is
that the structure is very close to Maillet type theorems developed in Gérard-Tahara
[4] and so we can apply a similar argument. In the case of linear equations, this class is
the same as the one introduced in [11]. The application will be given in a forthcoming
paper.

Throughout this paper, we let ¢ be the variable in C; (or in R(C; \ {0}) the
universal covering space of C; \ {0}), and let = = (x1,...,7x) be the variable in CX.
We denote by Op the set of all holomorphic functions in z in a neighborhood of Dg =
{x e CE;|zy| <R (i=1,...,K)}, and by Og[[t]] the ring of formal power series
in t with coefficients in Og. We often denote by C{t¢} the ring of convergent power
series in ¢ with complex coefficients. We set N ={0,1,2,...} and N* = {1,2,...}.

2. MAIN THEOREM

Let k > 0, I = (01, 63) be an open interval of R, and we write S; = {t € R(C; \ {0});
01 < argt < 02}, and Sy(r) = {t € S;; 0 < |t| < r} for 0 < r < co. For holomorphic
functions f(¢,z) and g(t,x) on S7(r) x Dg, we define the k-convolution (f *j g)(t, )
with respect to t by

(f #1 9)(t,2) = / F(r2)g(t* — TV 2)dr®, (t,x) € Sy(r) x Dr.
0

For basic properties of k-convolution, see Balser [1, 2], Ouchi [8, 9] and
Tahara-Yamazawa [11]|. For simplicity, we use the notations:

u? = uspu, U =wus,uxpu  and so on,

* *k
H Wi = Uy Uz, H U; = Uy ¥ Ug %, uz  and So on.
i=1,2 i=1,2,3

For (i,a) € N x N¥ | we write

kla|—k i .
] = tl“(Tl) xp, [(kt*)w], if |a] >0,
’ (ktF)iw, if |a| =0,
where a = (aq,...,ax) € N and |a| = a; + ... + ak. As is often used in [11],
M; o[w] is nothing but the k-Borel transform of
0

trlal (tk'*‘la)lw under w = Bi[W].
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One answer to Problem 1.1 is to consider the convolution partial differential equa-
tion

P(kt*, z)u = f(t,z)+ Y aialt,z) s (a[05u)

i+|al<m

S bty [ (aloou)) (2.1)

lv|>2 i+|a|<m

(where v = {Vj o} jtjaj<m € NV with N = #{(j,a) € Nx N¥; j + |a| < m}, and
V| = 34 |aj<m Vi) under the following assumptions:

(A1) k> 1is an integer, and 0 < |I] < 27 /k;

(A3) ! and m are integers with 0 <[ < m;

(43) P(\z) = M+ (@)A1t + ...+ e-1(2)A + ¢(x), and the coefficients ¢;(x)
(¢ = 1,...,1) are holomorphic functions in a neighborhood of Dpg, for some
Ry > 0;

(Ag) f(t,x), a5.0(t,z) (i+]a] < m)and b, (t, ) (Jv| > 2) are all holomorphic functions
on S[ X DRO;

(As) there are integers > 1, p; o > 1 (1 +|a| < m) and ¢, > 1 (|| > 2) such that
the estimates

F _
0,0 < gt exp(edl) on 1 x D,
|ai,a(t,z)] < ﬁ\t””_k exp(c\t|k) on Sy x Dg, (i + |a| <m),
B, _
by (t, )| < T(a/F) |t]% " exp(c|t|*) on S; x Dg, (Jv| > 2)

hold for some ¢ >0, FF >0, A; o, >0 (i + |a| <m) and B, > 0 (Jv| > 2);
(Ag) moreover, the sum
> Bt x

v|>2
is convergent in a neighborhood of (¢, X) = (0,0) € C2.

If b, (¢, z) = 0 holds for all |v| > 2, (2.1) is a linear equation and it is just the same
as the one treated in [11].

To show that (2.1) is an answer to Problem 1.1 we must show that (2.1) satisfies
the analytic continuation property posed in Problem 1.1. To do so, let us define two
indices s, and s;. For € R we write [z]; = max{z,0}. For v = {v; o }it|aj<m € NV
we set m,, = max{i + |a|; v, > 0} and

W= Y litld—lwvia= Y (i+lal =D
i+|al<m I+1<i+|a|<m

Under the assumptions (A;)—(A4s), we set
Ay ={(i,a) e NxN¥: 141 <i+|al <m,aq(tz) # 0},
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Ay ={veNV: |y >2m, >1+1,b,(tz) %0},

s —1—|—max{0 max ( i+la] 1 )}
a= " (,0)€Aa \Dia +E(i + || = 1)/ ]’

my, — 1
o *max[ 03 (e AT )]

If I = m holds, we have A, = ) and Ay, = (). This means that s, = 1 and s, = 1.
Now, we define x > 0 by

1/k=1/k—(so —1) with sp=max{s,,sp}. (2.2)

Lemma 2.1. If A = A, UA, =0, we have sg = 1, and so we have k = k. If A # 0,
we have 0 < so — 1 < 1/k, and so we have k > k.

Proof. The first half is clear. Let us show the latter half. If A, # ), we have
sa = 1= (i+ o] =1)/(pia + k(i +[a] = 1))
for some (i, ) € A,, and so

i+ ol =1 i+ ol —1

0<s,— 1= - -
i Pia+k(i+ o] —=1) " k(i+|a[—1)

=1/k.

If Ay # 0, we have
so— 1= (my —1)/(qv + p(lv| = 1) + k@))

for some v € Ay. Since m, =i + |a| holds for some (4, «) with v; o > 0, we have

0<sn—lm i+ |al =1 - i+ lal—1 <1
T u( =) kW) k(A G+ a] = Driat.) K
Thus, we have seen that if A # (), we have 0 < sg — 1 < 1/k, and so k > k. O

The following result is the main theorem of this paper.

Theorem 2.2. Suppose the conditions (A1)—(Ag). Let Ai(x),..., \i(x) be the roots
of P(\,x) =0, and assume that

)\2(0):0 or )\Z(O)E(C\’]T(Sk]) fOTi:1,2,...,l (23)

(where m is the projection w : R(C\ {0}) — C). Let k > 0 be as in (2.2). If u(t, x)
is a holomorphic solution of equation (2.1) on S;(0) x Dpg, for some d > 0, and if it
satisfies |u(t,z)| < Mo|t|*=* on Sr(8) x Dg, for some My > 0, then u(t,x) has an
analytic continuation u*(t,z) on Sy x Dg for some 0 < R < Ry such that

M - K
Ik "exp(b|t|") on Srx D (24)

holds for some M > 0 and b > 0.

u* (¢, )] <
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We note that 0 < |I| < 27/k implies C \ 7(Sk;) # 0, and so the condition
(2.3) makes sense. The rest part of this paper is organized as follows. The proof of
Theorem 2.2 will be given in Sections 3 and 4. In the next Section 3 we will prove
Theorem 2.2 in the case

AL(0), .., Am(0) € C\ 7(S51), (2.5)

and in Section 4 we will show Theorem 2.2 in the general case (2.3). In Section 5, we
will give a generalization to the case where the constants & > 0, u > 0, p; o > 0 and
gy > 0 in the assumptions (A;) and (As) are not necessarily integers.

3. PROOF OF THEOREM 2.2 UNDER (2.5)

In this section, we will prove Theorem 2.2 under the condition:

)\1(0),...7)\1(0) EC\W(Sk[). (31)

The meaning of this condition lies in the following lemma:

Lemma 3.1. If (3.1) is satisfied, we have the estimate
|P(kt*,z)| > o(|t|* +1)! on S; x Dp,

for some o > 0 and Ry > 0 sufficiently small.

The plan of the proof of Theorem 2.2 is as follows. In Subsection 3.1 we construct
a formal solution of equation (2.1), in Subsections 3.2 and 3.3 we give some estimates
of this formal solution: in this proof we can see that the structure of (2.1) is very
similar to that of Maillet type theorem developed in Gérard-Tahara [4]. By using this
formal solution, in Subsection 3.4 we show the existence of a holomorphic solution
u*(t,z) of (2.1) on Sy x Dg for some R > 0. In Subsection 3.5, we will show the
uniqueness of the local solution of (2.1), and complete the proof of Theorem 2.2.

3.1. CONSTRUCTION OF A FORMAL SOLUTION

Let us look for a formal solution of the form

u(t,z) = Z U (t, ). (3.2)

n>p

We substitute this formal series into equation (2.1) and then we collect the terms
of the same weight in the both sides of the equation: the weight is defined by the
following (we denote by w(f) the weight of f): w(P(kt*,z)) = 0, w(u,) =n (n > p),
w(f) = 1, W(@i0) = Pia (i +lal < m), w(Mia) = Kli+ [a] = 4, w(D3) = 0 and
w(by) = ¢ (Jv| > 2). Then, we can decompose our equation (2.1) into the following
recurrent formulas:

P(kt* x)u, = f(t,2), (3.3)
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and forn > p+1

P(k;tk,x)un = Z ai,a(t; I) *k (%La[agunfpi’afk[i+|a\fl]+])

i+]a|<m
* Vi’”‘*k " (34)
+ Y Sty [ J] (Hal0Sun,.i).
2<|v|<n—q, qu+|n(v)| i+|aj<m j=1
+k(vyi=n
where
n(y) = (ni7a(j); 1+ ‘Oél <m,1<j< Vi,oz)a ni,a(j) c N*,

and

In(v)| = Z Mia(l)+ ...+ nia(Via))

it+|a|]<m

In the formula (3.4) we used the convension: u,(¢,z) = 0 if p < p. We denote by
O(W) the set of all holomorphic functions on W. By Lemma 3.1, we can see that the
following result holds.

Proposition 3.2. Let Ry > 0 be sufficiently small. We have a unique solution
un(t,x) € O(Sy x Dg,) (n > u) which solves the system (3.3) and (3.4) (n > p+1).

Moreover, we have another result.

Proposition 3.3. The above u,(t,x) (n > u) satisfy the following estimates: there
are C' >0, h >0 and p > 0 such that

o
(Itl* + 1! T(n/k)

holds for any n > p and s > max{sg, Sp}-

lun,(t, z)| < [t|"~* exp(c|t|”) on S; x D,

Before we give the proof of this proposition, in Subsection 3.2 we present some
lemmas which are needed in the proof of Proposition 3.3, and then in Subsection 3.3
we give a proof of Proposition 3.3.

3.2. SOME LEMMAS

We write D% = {z € C¥; |z;| < R (i = 1,...,K)}, for the interior of Dg. For a
holomorphic function ¢(z) on DS, we set

[ell, = max|p(z)], 0<p<R.
|z[<p

For a > 0 and ¢ > 0, we set

‘t|a7k

a(tic) = t").

6ulti ) = s explele)

Then, the estimates in (As) are expressed as |f(t,z)] < Fou(t;c), |aia(t,z)] <
Ai adp, . (t;c) and by (t, )] < By, (t;c) on St x Dpg,. By [8, Lemma 1.4] and [11,
Lemma 7.2] (with ¢ = 1 and & = 0), we have the following lemmas.
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Lemma 3.4. Let f(t,z) € O(S; x D%) and g(t,z) € O(S; x D$). Then we have
(f %1 g)(t,x) € O(St x Dg). If they satisfy the estimates | f(t)||, < Adq(t;c) and

llg(t)ll, < Boo(t;c) on Sy for some 0 < p < R, A>0,a>0,B>0andb>0, we
have the estimate ||(f *x g)(t)]|, < AB¢qts(t;c) on St.

Lemma 3.5. Suppose that ¢ > 1| holds. Then for any p > 0 there is a constant > 0
which satisfies the following condition: if w(t,x) € O(S; x D,) for some p > 0 and if

Jw(®)], < bn(tic) on S

4
(It +1)
for some A >0 and N > u, we have

BNli+lal-1+

ol D)y <

APN 1 kfit|ol -4 (tc)  on Sy

for any i+ |of < m.
The following lemma is very useful (for the proof, see [7] or Lemma 5.1.3 in [5]).

Lemma 3.6. If a holomorphic function ¢(x) on DY, satisfies

A
lelly < 75——7 forany0<p<R
"= (R-p)e
for some A >0 and a > 0, we have the estimates

||8mig0||p§ ((a+1)eA forany0<p<Randi=1,... K.

R — p)ett

3.3. PROOF OF PROPOSITION 3.3

Take any s > max{sq, sp} and any R with 0 < R < min{1, Ry }. Since u,, is a solution
of (3.3), by (As) and Lemma 3.1 we have

) flto) F
fun(t @)] = ‘P(ktk,x)‘ = o(|t[F+ 1)

lgzﬁu(t;c) on Sy X Dg,

and by Lemma 3.6 we have

|l el

F
T < —— o, —_— St.
[0z u. ()] r < o(t[F + 1)1¢M( jc) x (Ry — R)le] on o1
Thus, by taking A > 0 sufficiently large we have
o A 1
102w, (t)||r < ;¢u(t;c) on St for any [af < m. (3.5)

ool ([t + 1)

Now, let us consider the following functional equation with respect to Y:
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1 BAi o
+ o(R—p)™ i+|az<m (R — p)m(piatklitlal-1+-1)
(M+pza +k’[2+ |Oé‘
wme [i+|a| =1+

qy+k >l +ﬂ‘l/|)m qv k[i+|a|—1] Vi,a
+ Z (g, TRy -2) ¢ H (Bt Y] ;
V|>2 2+‘a|§m

)" ' (3.6)
tpi,a+k[z+\a|—l]+ny

where p is a parameter with 0 < p < R, o is the one in Lemma 3.1, and n = (me)™
Since this equation (3.6) is an analytic functional equation, by the implicit function
theorem we see that (3.6) has a unique holomorphic solution Y = Y (¢) with Y (¢) =
O(t") (as t — 0). If we expand it into Taylor series Y =37 . ¥;,¢", we see that the
coefficients Y;, (n > p) are determined by the following recurrent formulas:

A

Y“ = (R _ p)m(;t—l)’

(3.7)

and forn > p+1

Yn _ 1 Z ﬁAi,a

o(R—p)™ i (R— p)m(pi,quk[iHaI*lH*l)

(M+pza+k[z+|a‘_l] )
LG TaT 5

V+k + m Lo
+ Z Z & q,+>1i<u>,/i||Z\D2) H H{ﬁnym,a(j)”v

2<|v|<n—q, qv+|n( y)| it+|a|<m j=1
+k(v)i=n

NYn_pi o —k[it+|al—14 (3.8)

where we used the convention: Y,, = 0 if p < p. Moreover, by induction on n we can
see that Y;, has the form
Cn
Y (R _ p)m(nfl) o 2 (3 9)

where C,, = A and C,, > 0 (n > p + 1) are constants which are independent of the
parameter p. Since Y;, depends on the parameter p, we sometimes write Y,, = Y, (p)
(if we hope to emphasize that it depends on p).

The following lemma guarantees that Y(¢) is a majorant series of our formal
solution u(t,z) in (3.2).
Lemma 3.7. For any n > p we have
(n—w=='

0Sun ()], < Y, t; S

19Ol < = (Il +1)! nnltic) - on 51 (3.10),,
for any 0 < p < R and |a| < m.
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Proof of Lemma 3.7. By the definition of A in (3.5), and the conditions (3.7),
0 < R<1andn>1we have

10z wu @)l < 107 uu ()]

A 1 1 n
ie) < Y, ; S
Nm_la‘ (|t|k + 1)[¢H(tvc) — Mm_lal (|t|k + l)l M¢M(tvc) on oy

for any 0 < p < R and || < m. This proves (3.10),. Let us show the general case by
induction on n.

Let n > pu+1, and suppose that (3.10) y is already proved for all N with u < N <
n — 1. By (3.10) and Lemma 3.5, we have

e B(N _ :u)!s_l
4,005 unl Ol < =iy

forany 0 < p< Rand i + |a| <m

NYNON+kfi+|al-1, (i) on St

for any p < N <n — 1. We note that by the assumption (As) we have

If(®)llr < Fou(t;c) on Sy,
laia(®)llr < Aiadp, . (t;c) onSr (i+]a] <m),
160 ()[R < Budg, (t;¢) on St (jv] = 2).

Therefore, by applying these estimates to (3.4), by using Lemma 3.4 and by setting

Pia =PiatE[i+ ol =14, ¢ =q + k), (3.11)
we have
”P(ktk)un(t)HP
n _p?a - /u’)!Sil
< (bn t C Z A’L oc( — p )m*[i+|0¢|*l]+ nYnfpiyafk[i+|a|fl]+
i+|a|<m

B(nialg) — !
S SR R T 1 1 (|

2<|v|<n—q, qi+|n(v)|=n i+|a|<m j=1
= ¢n(t;c)[1 + I2]. (3.12)

We note that Y,,_p,. . _k[it|aj—1), 7 O implies n — p; o — k[i +|a| —1]; > p and so
in I; we may suppose that n —p;, > u holds. We also note that if Io we have
n=q,+nW)| = q + plvl

Lemma 3.8. Under the above situation we have

nm (n—pfg—mpt*? (4 pfa)™

(n— )T (n—p’f‘ )mf[i+|a|fu+ S onegy i (313)

s—1
==l 7 (- el ) S @ )T ik (314)

it+]a|<m j=1 na
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Proof of Lemma 3.8. The proof of (3.13) is as follows. If 0 < i 4 |a| < I, we have
[i + || = 1]+ = 0 and so by using the condition n — p; , > p we have

nm™ (n—pia—wW " o (n—pi, )t

(n—p)t*=1 (n —p; ) lFlal=le = (n—p)ls=t (n—py )™

m * m + p* m
< n : _ (1 + pz,a* ) (1 + pza) (M pz,a)
(n—p;,)™ n—p;q H H

If I+1 < i+|al < m holds, by the condition s > s, we have p; ,(s—1) > [i+]a] =]+,
and so we have

nm (n—pfo—mp)l*
(n—p)le=t (n —p; , ym-litlel=l+
n" 1

(n— p;a)m—[i+\a|—l]+ X (- Pt l)p;a(s—l)

n >m< n =D, )[i+|a‘*l]+(n7p—p* o F Dlitlal=i
n—p=piat1 (n— p— pf o + 1)PraleD)

n )m( n=p;a )[i+|a\—l]
n—=Dp;a n—p—p;,+1

(
(

:(1+£>m(1+ g1 >[i+|a\—z]+
(

n = Dia n—-p-Piatl
Pla\™(y , p—L\litel=le (4 pi)™
< o — — L “vas
<(+50) () T
This proves (3.13).
Let us show (3.14). We note: if n; > 1 (i =1,...,|v|) and ny +... +np =n—q;
hold, we have n; < (ny...n},) fori =1,...,[v]andson — ¢, =n; +... + n) <

|v[(n1 ...n),)) which yields n < (g} + [v|)(n1...n),)), that is,

L etk
77,1...71|V‘ n

Therefore, by the same argument we have

Vi, 1 N
IT 11 _ < @D e cnse 5
itlal<m j=1 N0 (J) n

Since s > sp holds, we have (¢} + p(|v] —1))(s = 1) > [m, — ]+, and so

nza )[s 1
(n_ ls 1 H H(nz(x —[i4]a| =]+ )

it+]a|<m j=1
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nm Vi«
—_— _ |s 1
< G (0= ] H( o [mu )
it]a|<m j=1 e
n” @+ )\
= = (In()| — plv)1*~" x (T>
nlmy =l . L~ -
= (0 et < (DT (g )™ ol

n[mv—l]+

(n —q — :U/|l/| + 1)(‘1:+#(‘V|*1))(5*1)

IN

x (g5, + [yt

[my, —1]+
< * m—[m, —1]4
<(G—e 1) < (g +Iv])
qu +plv] =1 el _y

= ]_+ ) y+ v —[m, n

(O T <ot

qu + /j“y| -1 [ =1+ [m,—

< (14 LR (g et

= (g + plvl) mfl* x (g + ) Im e < (g) + plv))™

This proves (3.14). O

Hence, by applying Lemma 3.8 to (3.12) we have
1P (kt* Y (8)]]

(n_:u’)!s ! p’+pza)
S Tom On > A O‘ﬁ el 1Y n—pia—klitlal -1
it|a|<m

Vi,a

+ ) > Bulg+p)™ 1 H[BnYnm(])]] (3.15)

2<v|<n—qu g+ |n(v)|=n i+|a|<m j=1

By comparing (3.8) and (3.15) under the equalities (3.11), and then by using the
conditions 1/(R — p) > 1 and (3.9) we have

n — !sfl
PG, < (1) x o (R~ )
(n—mwt*t Cn
=T X e
and so by Lemma 3.1 we have
(n — p)!s=t 1 Cp

on St

Hun(t)”p < T(bn(t;c) X (|t|k 4 l)l (R _ p)m(an)

for any 0 < p < R. Hence, by Lemma 3.6, we have

(n—pt!
nm

(mn)\ale\al(;n
(It + 1)1 (R — p)rCn=2r+1e]

Hagun(t)”p < ¢n(t;c)
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(n —p)ts=t _ 1 (me)™C,,
< 7@1@’ C) (|t|k ¥ l)l (R _ p)m(nf2)+m

nm*‘a|

Gt Pn(t;c)

nm*‘a|

1
— 1Y, S
(e +1yr T On T

for any 0 < p < R and |a] < m. This proves (3.10),. O

Completion of the proof of Proposition 3.3. Take any 0 < p < R and fix it. Since
Y=> - u Yot is a holomorphic function in a neighborhood of ¢ = 0, we have the
estimates Y, < Ch™ (n > p) for some C' > 0 and h > 0. Therefore, applying this to
(3.10),, we have the estimate

(n—p)* 'y
|, < Ch"———F—n(t;
||Un( )”p — nm(|t\’f 4 1)l¢"( 76)
for any n > p. This proves Proposition 3.3. O

3.4. EXISTENCE OF A SOLUTION ON S; x Dg

Let us show the existence of a holomorphic solution u(¢,x) of (2.1) on S; x Dg with
some exponential growth: we have

Theorem 3.9. Suppose the conditions (A1)—(Ag) and (3.1). Let k > 0 be the one
n (2.2). Then, equation (2.1) has a holomorphic solution u(t,x) on Sy x D, for some
p > 0 which satisfies the estimate

- K
lu(t, )| < Ty '1)1 |t|"* exp(b]t|®) on S x D, (3.16)
for some M >0 and b > 0.

As is seen in the proof given below, this result is valid also for (s, ) satisfying
max{sq, sp} <s<1l+1/kand 1/k =1/k—(s—1).
To prove Theorem 3.9, we will need the following lemma.

Lemma 3.10. Let a > 0 and k > 0. For any d > 1 there is a C' > 0 such that

tn
ng otk < Cexp(dtF) fort>D0. (3.17)

Precisely, for any d > 1 we can take C as
B(a/k,1/k) [n r1\n/k
C=14+—"—— — = ,
Ve 72 k (d)

where B(z,y) is the beta function.
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Proof. We know the following facts:
I'(z) > V2ra®Y2e=%  for x> 0,
T'(n/k) _ B(a/k,n/k) < B(a/k,1/k)
I'((ec+n)/k) (a/k) = T(a/k)

Since the maximum of z/¥e=9 (with n > 1) on & > 0 is equal to (n/kd)
we have

for n > 1.

n/ke—n/k7

k k k
"= edt efdt < edt ~ max(xn/kefdz)
>0

x t"

__di* 1\n/k n/k —n/k o dt* 1\n/ky/n/k
— et (d) (n/k)™ke~™k < e (d) o L/R)

and therefore

t’ﬂ

t" 1
L e r i)~ Tald * 2= [+ m/)

1 1 i n/k
D(a/k) Z R @)
o Bla/k, 1/k) a/k 1/k) 1\n/k \/n]k
+3 e (3)

a/k I(a/k) Vor
(- )
This proves (3.17). O

Proof of Theorem 3.9. Take any s satisfying s > max{s,, s} and 0 < s — 1 < 1/k,
and then define k >0 by 1/k =1/k — (s — 1). Let

= Z U (t, )

be the formal solution constructed in Subsection 3.1.
First, let us see the case s = 1. In this case, we have kK = k. By Proposition 3.3,
we have

[un (8, 2)] < fh" ; o~ exp(c|t|*)
2z 2 [+ T
_ ChHjt|»=* h|t|
= 17 exp(clt|®) E I‘ on Sy x D,.

By Lemma 3.10, we know that for any d > 1 there is a C7 > 0 such that

_ (plth? gk
< .
E I‘ ETD Cy exp(dh”|t]"), |t| >0
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Thus, by applying this to the above formula and by setting M = C;Ch* > 0 and
b= c+ dh* > 0 we have the result (3.16).
Next, let us consider the case s > 1 (with s — 1 < 1/k). Since

=t < O h"T(n(s — 1)) n=12,...

holds for some C7 > 0 and h; > 0, by Proposition 3.3, we have

Chn Clhlnf(n(s — 1)) n—
_ CCy(hhy)" B(n/k,n(s — 1)) n_
- (‘t|k + 1)[ F(TL/K,) |t| ¥ exp(c|t\k)
CCl(hhl)n B(l/l{, (8—1)) n— .
(1) T(n/r) [t|"~* exp(c|t|") on St x D,

for any n > p. Therefore, if we set Cy = CC1B(1/k, (s — 1)) and hy = hh; we have

DY S 1E S TS
21l 01S 2 e )
Cgh2“|t|“ k (halt|)4
- = t SrxD,.
Qi+ 1y ) Zr Carwym 5D

q>0

Thus, by using Lemma 3.10 and the condition x > k, we can show (3.16) in the same
way as in the case s = 1. O

3.5. UNIQUENESS OF THE LOCAL SOLUTION

Now, let us show the uniqueness of the local solution of (2.1). To do so, it is enough
to prove the result (Theorem 3.11) given below. Recall that for 0 < r < co we wrote
Si(r)y={te Sr; 0<|t| <r}.

Theorem 3.11. Suppose the conditions (A1)—(Ag) and (3.1). Let 0 < r < oo and
R > 0 be sufficiently small. If ui(t,xz) € O(S1(r) x Dgr) and us(t,z) € O(S(r) x Dg)
are two solutions of equation (2.1) on Si(r) x Dg satisfying the estimates |u;(t, z)| <
Mol|t|#=* on S;(r) x Dg (i = 1,2) for some My > 0, then we have uy(t,z) = ua(t,z)
on Si(r) x Dp.

In this case we will use
t—

¢n(ta0)zr(n/k), n=12,....

Before the proof of Theorem 3.11, we note that if we consider equation (2.1) on
S1(r) x Dg, by the condition (A4s5) we have

|f(t,2)| < Fi¢1(t;0) on Si(r) x Dg,
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la; o(t, 2)] < Aja161(80) on Si(r) x Dp (i + |a] <m),
|b, (¢, 2)| < Bya1¢1(¢;0) on Si(r) x D (Jv| > 2)

for some F; > 0, A; o1 > 0 and B,; > 0. Since r > 0 is assumed to be sufficiently
small, by (Ag) we have the condition that the series 3, ,~, Bu1 X Il is convergent in
a neighborhood of X = 0.

Moreover, by [11, Lemma 7.7], we have the following lemma.

Lemma 3.12. For any p > 0 there is a constant § > 0 which satisfies the following:
ifw(t,x) € O(S;(r)xDg,) for some Ry > 0 and if the estimate ||w(t)||r, < Adn(£;0)
on Sr(r) for some A >0 and N > u, we have

|4 o [wW](E)||r, < %AgﬁN(t;O) on Si(r) for any i+ |a] < m.
By using these conditions, let us give a proof of Theorem 3.11.

Proof of Theorem 3.11. Let uy(t, ) and uz(t, ) be two holomorphic solutions of (2.1)
on S7(r) x Dp satisfying the estimate |u;(t,z)| < Mo|t|*~* on S;(r) x Dg (i = 1,2)
for some My > 0.

Set u(t,x) = uq(t,z) — uz(t,x). By Lemmas 3.6 and 3.12 we have the following:
for any 0 < Ry < R, there is an M; > 0 such that

| ;.o [05u] ()| R, < M1¢1(¢;0) on Si(r) for any i + |a| < m. (3.18)

Moreover, we have

P(kt®, z)u
= Y aialt,®) #, (Mial05u])
i+|al<m
Y bty a| [[ (ialiu))™ = T (AialdSus)) ™
lv|>2 i+|a|<m it|a|<m

Here we note that we have the expression

*K *k

[ (Aosogu)™ =] (Aal0gua))™"

i+|a|<m i+]a|<m

= Y cuialt®) sk (M.a]05 (ur — u2)))
i+|a|<m

for some holomorphic functions ¢, ; o(t,z) € O(Sr(r) x Dg,) (i + || < m). Let us
note a simple calculation:

Xlk‘Ylmzln _ X2k3/2mZ2n
_ (Xlk . XQk:)Yllen +X2k(Y1m o Y*Qm)Zln +X2kY2m(Zln . Zgn)
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= (XXX 4+ XM 2 (X - X)
+ X P VT L+ Y2 X (V) - Ya)
+ XY 2T 4 20T 2 A+ 227 X (Zh — Zo).
By using this argument, we can see that ¢, ; (¢, ) (i + |a] < m) are given by the

following: if v; o, = 0, we have ¢, ; o(t,z) = 0, and if v; o > 0, we have

*k

Cialtir) =TI (Asl07us])™
(4,8)=<(i,a)

| (Maaldun])™ T e (A0 a]) ]

p+q=via—1
*k

s [ (A sl08u))™,
(4,8)>(i,c)

where < is any linear order in the set {(¢, @) ; i+ |a| < m} (by this order we can write
all elements as (ip, o) (p=1,2,...,N) so that (i1,01) < (i2,x2) < ... < (in,aN))-
Thus, by setting

Vialt:x) = aia(t,m) + Y by(t,) 5k cpialt, ), i+ |al <m,
[v]>2

we see that v; o(t,z) (i + |a] < m) are holomorphic functions on S;(r) x Dg, and
that u(t, ) satisfies a linear convolution partial differential equation

P(kt®, z)u = Z Yisa(t, @) xp, (AM;,6[000]). (3.19)
it|a|]<m
Since —_——
P (£0) < F(Ty%rylldn(t;o) on Sr(r)

holds, by Lemma 3.4 and (3.18) we can see that 7; o(t,z) (i + |a] < m) satisfy the
estimates

Vi ®)lr, < Ciadr(t:0) on Sp(r) (i+ |a] < m)

for some Cj o > 0 (i + |a] < m). Let us show the following lemma.

Lemma 3.13. There is a K > 0 such that for anyn =1,2,... we have

M
G e n(t:0) on 51(7)

for any 0 < p < Ry and i+ |a| < m.

Mo [0, < K™
|-t 02O, 20,

Proof of Lemma 3.13. In the case n = 1 this is already proved in (3.18). Let n > 2
and suppose that (3.20),,_; is already proved. Then by Lemma 3.1, (3.19) and the
induction hypothesis we have

1 Z _ M,
< — . n-2__ -~ .
Hu(t)Hp - CZ,QK (Rl — p)m(n—2) ¢n(t; 0) on S](T‘)

i+|a|<m
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for any 0 < p < R;. Therefore, by Lemmas 3.6 and 3.12, we have

| ralou) @), <2 3 Crak?

My (me)™
z+|a\<m 1

(Ry — p)m(n— 1)¢n(t 0) on S;(r)

for any 0 < p < Ry and i + |a] < m. Thus, if we take K > 0 so that

Kzg Z Ci,a(me)™

it|a|]<m

we have the result (3.20),,. This proves Lemma 3.13. O

Thus, by letting n — oo in (3.20), (with (4,a) = (0,0)) we have |Ju(¢)||, = 0
for any 0 < p < Ry and ¢t € Sy(r), that is, u(t,z) = 0 on Sy(r) x Dg,. Since R; is
taken so that 0 < Ry < R, the unique continuation property in z yields u(t,z) = 0
on Sy(r) X Dg. This proves Theorem 3.11. O

3.6. COMPLETION OF THE PROOF OF THEOREM 2.2

Let u(t, ) be a holomorphic solution of equation (2.1) on S;(§) x Dg, for some § > 0
and Ry > 0, and suppose that it satisfies [u(t, z)| < My|t|*~* on S;(§) x Dg, for some
My > 0. Let u*(¢,x) be a holomorphic solution of (2.1) on S; x Dg constructed in
Theorem 3.9. If we consider the equation on S;(d) X Dg, we can apply the uniqueness
result in Theorem 3.11. Hence, we have u(t, z) = u*(t,x) on S;(6) x Dg. This shows
that u* (¢, x) is a holomorphic extension of u(t, ) to the domain S; x Dg. The estimate
(2.4) follows from (3.16). This proves Theorem 2.2 under (2.5). O

4. PROOF OF THEOREM 2.2 IN THE GENERAL CASE

In this section we will prove Theorem 2.2 in the general case, that is, under the
condition:
Ai(0) =0 or A\ (0) € C\7(Sky) foralli=1,2,...,1L (4.1)

In order to overcome the difficulty of the case where A;(0) = 0 occurs for some i, we
will employ the same method as in Braaksma [3] and Ouchi [9].

We note that if I = (J?_, I; for some open intervals I; (i = 1,2,...,p) and if
u(t, ) has an analytic extension to Sy, X Dg for each i = 1,2,...,p, then u(t, z) has
an analytic extension to S; X Dg. This shows that in the proof of Theorem 2.2 we
may suppose the condition: 0 < |I| < 7/2k.

We write

Si(r]={t e R(C\{0});t € I,0 < |t| <r},
Lo(r) ={t e R(C\ {0}); argt = 6,0 < [t| < r}.
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Definition 4.1.

(1) We denote by 27 (Sr(r] x Dg) the set of all functions f(¢, ) which are continuous
on Sy(r] x D (C C; x CE) and holomorphic in x € DS, for any fixed ¢ € Sy(r].
(2) We denote by 2 (Lg(r) x Dg) the set of all functions f(t, z) which are continuous
on Ly(r) x Dg (C C; x CE) and holomorphic in x € D%, for any fixed t € Lg(r).

In the proof of Theorem 2.2 given below, we will start our discussion from the
assumption that u(t,x) is a holomorphic solution of equation (2.1) on S;(§) x Dg,
for some § > 0. From now, we fix 4 > 0. Then we take any 7o > 0 such that 0 < rg < 9§
and fix it. Thus,

0 and ry are fixed so that 0 < g < §. (4.2)

We first note that the meaning of the condition (4.1) lies in the following lemma.
Lemma 4.2.

(1) If (4.1) is satisfied, for ro > 0 in (4.2) we can take o > 0 and Ry > 0 so that we
have the estimate

|P(kth )| > o(|t|" + 1) on (S;\ Si(ro)) X Dg, . (4.3)

(2) Therefore, if g(t,x) € Z (St x Dg,) satisfies g(t,z) = 0 on Si(r) x Dg, for
some r > rg, the equation P(kt*,x)w = g(t,z) has a unique solution w(t, ) €
X (Srx Dpg,) which satisfies w(t,z) = 0 on Sp(r)x Dg, . Moreover, if |g(t, z)| < A
holds on St x Dg, we have the estimate

it z)] < ——2

_m OnS[XDRl.

4.1. PROOF OF THEOREM 2.2

In this subsection, we will present three propositions and one lemma without proofs,
and then we will show that if we admit these result, we can prove Theorem 2.2 in the
general case. The proofs of propositions and lemma will be given later.

The first proposition is as follows:

Proposition 4.3 (Extension as a continuous solution in t). Suppose the conditions
(A1)—(Ag) and (4.1). Let & > 0 be the one in (2.2). If u(t,xz) € 2 (Si(r] x Dg,)
is a solution of equation (2.1) on Si(r] x Dg, for some r > ro and if it satisfies
lu(t, )| < Mo|t|*=* on S;(r] x Dg, for some My > 0, then u(t,z) has an extension
u*(t,x) € Z(S; x Dg) on St x Dy for some R > 0 which satisfies the following
properties: u*(t,x) = u(t,x) on Sy(r] x Dg, u*(t,x) is a solution of (2.1) on S; X Dg,
and

M - K
Ik "exp(b|t|") on Srx Dr (4.4)

holds for some M >0 and b > 0.

u™(t,z)| <

The next one is a result on the uniqueness of the solution.
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Proposition 4.4 (Uniqueness of the local solution). Suppose the conditions
(A1)—(Ag) and (4.1). Let uy (t,z) € Z (Lg(r) x Dg) and uz(t,x) € Z (Lo(r) x Dg) be
two solutions of equation (2.1) on Lg(r) x Dg for some 8 € I and r > rg, and suppose
that they satisfy the estimates u;(t,z)| < Mo|t|*™* on Lg(r) x Dg (i = 1,2) for some
My > 0. Then, if ui(t,z) = ua(t,z) on Lg(r1) X Dg for some r1 with ro < r; <r,
we have uy(t, ) = us(t,z) on Lo(r) x Dg.

The third one is a result on the holomorphic extension in a local region. For tg
and r > 0 we write Ay (1) = {(t* +tE)/*; t € Si(r) ).

Proposition 4.5 (Holomorphic extension). Suppose the conditions (A1)—(Ag) and
(4.1). Let u(t,x) € 2 ((Sr(r] U Le(2Y*r)) x DR) be a solution of equation (2.1)
on (Sr(r] U Lg(2'/*r)) x Dg for some 0 € I and r > ro which is holomorphic on
Si(r) x D%, and suppose that |u(t,z)| < Mo|t|*=* holds on Si(r] x Dg for some
My > 0. Set tg = re’, and take any 1 > 0 (with 7o < ry < 7). Then, u(t,z) is
extended holomorphically up to the domain Ay, (r1) x D, for some 0 < p < R and its
extension is bounded on Ay (r1) x D,.

The last one is a general result on the holomorphy of functions.

Lemma 4.6 (On the holomorphy). Let S be an open subset of C;. If u(t,x) €
Z (8 x DR) is holomorphic on Sx Dj for some 0 < p < R, then u(t, x) is holomorphic
on S x Dg,.

In the first part of this section we have supposed the condition 0 < |I| < 7/2k. By
this condition, we have St (r)NAy, (r) = 0. This fact can be verified by noticing that the
condition S7(r)NA, (r) = () is equivalent to the condition Syr(r*)N(t§+ Skr(r*)) = 0,
and by drawing pictures of Sg7 ("), t§ and t§ + Sir(r%).

By using these result, let us give a proof of Theorem 2.2.

Proof of Theorem 2.2. Let u(t, z) be a holomorphic solution of equation (2.1) on Sy (4)
xDp, for some § > 0, and suppose that |u(t,z)| < My|t|*~* holds on S;(8) x D,
for some My > 0. We may suppose the conditions (4.2) and (4.3).

(1) Take any r > 0 (with 7o < r < §); then by Proposition 4.3 we see that u(¢, z)
(restricted on S7(r] x Dg,) has an extension u*(t,z) € 2 (Sr x Dg) on St X Dg
for some 0 < R < Ry which satisfies the following properties: u*(t,z) = u(t,z) on
S1(r] x Dg, u*(t,x) is a solution of (2.1) on St X Dg, and the estimate (4.4) holds
for some M >0 and b > 0.

(2) Let us consider two solutions u(t,z) and u*(¢,x) on Sr(d) x Dg. Then by
(1) we have u*(t,x) = u(t,x) on Si(r] x Dr, and so by applying Proposition 4.4 we
have u*(t,z) = u(t,x) on Sr(d) x Dgr. This shows that u*(¢,z) is holomorphic on
51(5) X D?%

(3) To show Theorem 2.2 it is enough to prove that this u*(¢,z) is holomorphic
on S; x D%; by (2) we already know that u*(¢,z) is holomorphic on S;(6) x D%.

(4) Take any 6 € I, 7 > 0, and r; > 0 (with ro <y <7 < and (rF +rF)V/* < §),
and we consider the function u* (¢, z) on (Sr(r]ULg(2'/*7)) x Dg. By (1) we know that
this u*(t, ) is a solution of (2.1) on (S;(r]ULg(2'/*7)) x D and by Proposition 4.5 we
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see that u*(t,z) (restricted on (S;(r]U Lg(2'/%r)) x Dg) has a holomorphic extension
uy(t, ) on Ay (r1) x D, for some 0 < p < R which is bounded on A, (r1) x D,,.

Now, we set U = S7(d) N Ay, (1), and let us consider two functions u*(¢,z) and
u1(t,z) only on U x D,. Since these two functions are holomorphic on U x D, and
since u*(t, ) = uy (t,z) on (UN Lg(2'/%r)) x D,, by the unique continuation property
of holomorphic functions we have u*(¢,x) = u1(¢,2) on U x D,. Thus, if we set

WOt z) = u*(t,x), if (t,x) € Si(6) x D,
7 wy(t,x), if (t,2) € Ay, (r1) x Dp,

we have a holomorphic extension u®(¢,z) of u*(t,z) (restricted on S;(8) x D,) to the
domain (S7(8) U Ay, (r1)) x D,.

(5) Take a sufficiently small € > 0 such that the interval Iy = (6 — ¢, 0 + €) satisfies
Sp, ((rF + rF)V/*) € S1(8) U Ay, (r1), and let us consider two functions u*(t,2) and
u®(t, ) only on Sy, ((r¥ +75)Y/*) x D,. Since u°(t, x) = u*(t,z) holds on Sz,(8) x D,,
we see that u°(t,z) is a holomorphic solution of (2.1) on Sy, (6) x D,, and so by
the unique continuation property of holomorphic functions we have the result that
u®(t, r) satisfies equation (2.1) also on the domain Sy, ((r*+7%)1/¥)x D,,. Therefore, by
Proposition 4.4 (with R replaced by p) we have the conclusion that u%(t,z) = u* (¢, x)
on Sr,((r* 4+ r#)1/¥) x D,. Thus, we have proved that u*(t,z) is holomorphic on
St ((r + r§)1%) x D,

(6) Since u*(t,x) € 2 (S5, ((r* + r¥)1/¥) x Dg) is known (by (1)), by applying
Lemma 4.6 to the conclusion of (5) we see that u*(¢,z) is holomorphic on Sz, ((r* +

k\1/k o
i)V x DS%,.

(7) Since § € T and ro < 71 <7 < & (with (rF 4 7¥)1/% < §) are taken arbitrarily
in (4), we can conclude that u*(t,z) is holomorphic on S7(2'/%§) x DS%,.

(8) If we replace § by 21/%6 in (4)-(7), by the same argument as above we can prove
that u* (¢, z) is holomorphic on S7(2%/%6§) x Df5,. By repeating the same argument, we
have the conclusion that u*(¢, z) is holomorphic on S7 x D%. This proves Theorem 2.2.

O

Thus, to complete the proof of Theorem 2.2 it is sufficient to show Propositions
4.3, 4.4, 4.5 and Lemma 4.6. For A = {\ o }itja|<m € NV, we define |[A| and (X); in
the same way as in Section 2. The following lemma is used in the discussion below.

Lemma 4.7.
(1) Let d > 0. For any p=1,2,... and |t| > 0 we have

V2\P

Gnp(tic) < C0<7> /kgbn(t;c—i— d) with Cy = w

N

(2) Let ax(t,z) € Z (SrxDg) (A > 1) andw; o (t,x) € X (SixDpg) (i+|a] < m).
Suppose that there are Ax >0 (J]A\| > 1), px € N* (|]A] > 1), M > 0 and p € N* which
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satisfy lax()lx < Ard, (66) on 51 (N = 1), lwia®ln < Myinisialg. ()
on St (i+laf <m), and 37,y 5, At XM e C{t, X}. Then, if we set

flt,x) = Z ax(t, x) * H

IAI>1 itla]<m

e * i o
[wi,a} 9

we have the result that f(t,z) is well-defined as a function in the class 2 (S; x Dg)
and the estimate || f(t)||r < Fou(t;c+ d) holds on St for some F >0 and d > 0.

Proof. Let us show (1). We note that the maximum of f(z) = 2%~ (with a > 0)
on z > 0 is equal to (a/d)*e~® and so by Stirling’s formula we have

a, —dx a\® _, 1 a\/(EF(a) \/i aF(a)
et < (G) e = Q) Var Sﬂ?)¢%’x>a
where we used the fact that 2% > a for a > 0. Hence, we have
r  D(n/k
Grip(t; €) = dn(t;c+ d) x [t|Pe” F((n(z/p))/k)
| V2\P/*T(p/k)  T(n/k)
§¢n(t,c+d)x( d ) Vv2r T((n+p)/k)

< onlize+ (L) EULED,

d
Let us show (2). Let d > 0 be sufficiently large. Then we have v/2 < d. By the usual
argument and the result (1), we have

1F O < Y AXMM ey, iy (o)
A1

V2N (eA+EN) i+ulN =) /K
(%) Pullictd)

(2" 5 () (D) e v

In the above we have used the fact (v/2/d)Mt < 1. Since d > 0 is sufficiently large,
the above series is convergent. This proves (2). O

4.2. PROOF OF PROPOSITION 4.3

Let u(t,x) € Z°(S;(r] x Dg,) be a solution of equation (2.1) on S;(r] x Dg, for some
r > 7o and suppose that |u(t, z)| < Mp[t|*~* holds on S;(r] x Dg, for some My > 0.
Set

Uext (t, ) = ult, @), if (¢t,z) € S;(r] X DRy,
o u(rt/[t]x), if (t,2) € (Sr\Si(r]) x D,
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Then we have uext(t, ) € 2 (St x Dg,) and uext (¢, ) = u(t, ) on Sy (r] x Dg,. Since
lu(t)||r, < Mi¢(t;c) holds on Sy(r] for some M; > 0, by Lemmas 3.5 and 3.6 we
have the following: for any 0 < Ry < Ry there is an M > 0 such that

[ #1007 vext) ()| Ry < M@pirfitial-1. (t;¢) on Sy for any i+ |af <m.  (4.5)

We set
fext(tvx) = Z ai,a(tax) *K (%,a[aguext})
i+|al<m
S bty [ (Maldte]) T+ PO )t
lv]>2 i+]a|<m

By Lemma 3.4, (4.5) and Lemma 4.7, we can see that fex(t,z) is well-defined as a
function in the class 2°(S;r x Dg,) and that it satisfies the estimate || foxt(t)||r, <
Fi¢,(t;c+ d) on Sp for some Fy > 0 and d > 0. Since uex(t,2) = u(t,x) holds
on Si(r] x Dg, and since u(t,z) is a solution of (2.1) on S;(r] X Dg,, we have
fext(t,x) = f(t,x) on S;(r] X Dg,: therefore, we see that foxt(t, z) is holomorphic on
SI(T') X D?ﬂ'

Now, let us look for an extension u*(¢,z) on Sy x Dpg, as a solution of equation
(2.1) in the form:

w(t, ) = text (8, ) + w(t,x), w(t,z) =0 on Si(r) x Dg,.

The condition w(t,z) = 0 on S;(r) x Dg, guarantees that u*(t,x) is an extension of
u(t, z). Since u*(t,z) must be a solution of (2.1), the unknown function w(t, z) must
satisfy the following equation:

P(ktt,2)w = f(t,2) = foxe(t,2) + Y aia(t,z) 5 (M a[05w))

it|a|<m
=S bty ] (Mol (e + w)
lv[=2 it+|a|<m
- T Ao ™| (46)
it+|a|]<m

Lemma 4.8. Let X = {X; o}iqjaj<m € CN, and let us consider

F(X)= Y HhX*eC{X}

[A[>1

with A = {)‘i,a}i+\a|§m € NN? Al = Zi-‘rla\ﬁm Aia and Xt = Hi-i—\alﬁm(Xi,a))\i’a-
Then, we have the formula:

FIX+Y)-F(X)=Y_ [Z V!(;iy)!fu@u v,

lv|>1 " "\=v
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where {Xia}itlal<m 7 {Viatitlaj<m means that N; o > v; o holds for all (i,a) with
i+ ol <m.

Therefore, by setting
g(t,.’l:) = f(th) - fe)(t(t7x)7
hio(t,x) = Z Ai,aba(t, ) *p H ' (///j,g[afucxt])*k)\m

[A[=2,X5,0>0 (3:8)#(i,)

s (M 000 Uest]) Y,

Al e *E(Ad,a —Vi,a
CV(tﬂx) = Z mbk(tax) *k H (<%i,o¢[agucxt]) (s, ' )7

IA>2 v i+|a]<m

equation (4.6) is expressed in the form

P(kt*, x)w = g(t,z) + Z (a5,0(t,2) + hia(t, @) *p (Mia[03wW])

it|a|<m
+ > alta) H ] (4.7)
lv|>2 i+|a|<m

This is just the same type of equation as (2.1), but in this case we have the condition
g(t,z) =0 on S;(r] x Dg,, and so in the construction of a formal solution on Sy x Dg,
(under the condition w(t,z) = 0 on Sy(r) X Dg,) we can use (2) of Lemma 4.2.

By the definition, we have g(t,z) € 2 (Sr x Dg,), g(t,z) = 0 on Si(r) x Dpg,,
hio(t,x) € Z(S; x Dg,) N O(S1(r) x Dg,) (i + |a| < m), and ¢, (t,x) € Z (S x
Dg,)NO(Si(r) x Dg,) (Jv] > 2). Since g(t,z) = 0 on S;(r] X Dg,, for any u1 > p
we can find a constant G > 0 such that [|g(t)||r, < G¢,,(t;c+d) holds on Sy x Dg, .
Moreover, if we take d > 0 sufficiently large, by Lemma 3.4, (4.5) and Lemma 4.7 we
can see that

[hia@) R, < Hiadry,o(tic+d) onSp (i+|af <m),
v, < Cua, (te4+d) on Sp (Jv] = 2),
> o xec{t x}

lv|>2
hold for some H; o >0 (i + |a| < m) and C, > 0 (Jv| > 2), where
Vi = min{gx + k(A — k[i + [af = U4 + p(IA[ = 1)
b/\(t,ﬂf) 3—6 07 IA‘ 2 27 Aza > O}a
v =min{gx + k(A = v)r+ u(IAl = [v]); ba(t,z) 20, A= v}

Under these situation, we set

Ap ={(i,0) e Nx NF; 1 +1 <i+|a| <m,hiq(t,z) # 0},
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Ac:{ueNN; lv| > 2,m, >1+1,¢,(t,x) £ 0},

i+ a1
o s (el )
o *m“{ dﬁﬁh%@+ku+mr4>}

m, — 1
c= 1+ 07 .
s maX|: lfrelaé)i (’)/l, Jr]'</'<l/>l +,U1(|l/‘ — 1) ):|

Then, we have the following lemma.

Lemma 4.9. As before, we set so = max{sq, sp}. If u1 is sufficiently large, we have
S0 > max{Sq, Sh, Sc}-

Proof. If sg = 1, we may assume that m < [. In this case we have s, =1 and s, = 1,
and so we have the result.

Let us show the case sg > 1. By the definition, we have sg > s,. For any (i, ) € Ay,
we have v, o = ¢x + k(A) — k(i + |a| = 1) + p(JA| — 1) for some A € Ay, and so

i+ o =1 B i+l =1
Via k@ + o) =1 gn+ kA + p(N = 1)

< my — <o —1<sy—1
Stk Fp(A - S S

This shows that s, < sg holds. Moreover, for any v € A, we have

my, — 1 <mfl
Yo + kW + (v -1 T m

<sp—1

if ug > (m —1)/(so — 1) holds. Therefore, if u; > 0 is sufficiently large, we have
$e < 8g. This proves Lemma 4.9. O

Thus, by (2) of Lemma 4.2 and by the same argument as in Subsections 3.1-3.4
we can show the following result:

Proposition 4.10. Under the above situation, equation (4.7) has a solution w(t, x)
€ Z' (St x Dg) for some R > 0 which satisfies w(t,z) =0 on Si(r) x Dgr and

M
; |t~ F exp(b]t|®) on S; x Dg

lw(t, z)| < F 1)

for some M >0 and b > 0.

By setting u*(t,z) = uext(t, ) + w(t,z) we have an extension of wu(t,x). This
proves Proposition 4.3. O

4.3. PROOF OF PROPOSITION 4.4

Let ui(t,x) € £ (Lo(r) x Dg) and us(t,x) € £ (Lo(r) x Dg) be two solutions of
equation (2.1) on Lg(r) x Dg for some 6 € I and r > r( satisfying the estimates
lui (t,z)| < Mo|t|*=* on Lg(r) x Dg (i = 1,2) for some My > 0, and suppose that
up(t, ) = ua(t, z) holds on Ly(r1) x Dg for some r; with ro <ry < r.
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We set u(t,z) = ui(t,x) — ua(t,x): as we have already seen in Subsection 3.5,
u(t, x) satisfies a linear convolution partial differential equation (similar to (3.19)):

P(kt®, z)u = Z Yi,a(t, T) *p, (%a[agu])

i+|a|<m

for some suitable v; o (¢, x) € Z (Lo(r) x Dg). Since u(t,2) = 0 holds on Lg(r1) X Dg,
we can use (2) of Lemma 4.2. Thus, by the same argument as in the proof of The-
orem 3.11 we can show that u(t,z) = 0 on Lg(r) x Dg, for any 0 < R; < R. This
proves Proposition 4.4. O

4.4. NEW CONVOLUTION ON S;(R] U Ar, (R)

Let 7 > 0,0 € I and ty = re?’. We denote by H(S7(r]UAy, (r)) the set of all functions
f(t) which are continuous on S (r]UAy, (r) and holomorphic in Sy (r)UAy, (). In order
to prove the analytic continuation in a local region, Braaksma [3] and Ouchi [9] have
used a new convolution (f%g)(t) of two functions f(t) and g(t) in H(S7(r]U A, (1)).
Let us recall its definition.

The difficulty lies in the fact that the usual convolution (f *x g)(¢) is well-defined
for t € S;(r]U Lg(2Y*r) but not for t € A, (r)\ Lg(2'/Fr). The situation is as follows.
For t € Ly(2'/*r) with |t| > r, the convolution (f *; g)(t) is given by

(f # g)(0) = / F)g((tE — TRyt 4 / F()g((tE — T4 E)ydrk,
0 to

If we set ¢ = t* — 7% in the first term of the right-hand side, by the condition
(tF —tF)/F € Ly(r) we have

/ F)g((t* — 7)) drk = / F((E* = 2F)/9)g()da®

0 (th—tk)1/k

- / F((E* — ¥ 9 g()da® + / F((E* — ) %)) da®
(th—tk)1/® to

Therefore, for t € La(2'/%r) with [t| > 7, (f *x g)(t) is written in the form

g = [ 5= Pgrrart
(tk—th) 1/
/ f (4.8)
+ [ @ =gt 4 [ gl -

=1 + 13+ Is.
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We write Lg[to,t] = {2z € Lg(2'/%7); |to| < |z| < |t|}, etc. Then, in the above integral
formula (4.8) we see: in I; we have

(tF — 7RYVVR e Ly[(tF —tE)VE 9] and T € Lo[(t* — th)Y* o],
in Iy we have
(tF — 7F)VVE e Lgl0, (tF — tE)Y*] and 7T € Lolto, t],

and in I3 we have 7 € Lylto,t] and (t* — 7%)1/% € Lg[0, (tF — tE)1/*].

If we consider the right-hand side of (4.8) for ¢t € Ay (r), the variables of the
integrants move in the following way: in I, the variable of f moves like g —
(t* —to)'/* in S;(r) and the variable of g moves like (t* — to)'/* — tq in S;(r); in
I, the variable of f moves like (t* —t¢)'/* — 0 in S7(r) and the variable of g moves
like tg — ¢ in Ay, (7); in I3, the variable of f moves like tg — ¢ in Ay, (r) and the
variable of g moves like (t* — to)'/* — 0 in S7(r).

Thus, if we use the formula (4.8) as a new convolution of f(¢) and g(t) for t € A (r)
we have a natural generalization of the convolution.

Definition 4.11. For f(t) € H(S(r]UA, (r)) and g(t) € H(Sr(rJUAs, (1)), we define
a new convolution f%,g on S7(r]UAy, (r) in the following way: if t € S;(r]ULg(2Y/*r),
we define the convolution (f%g)(t) by the usual formula, and if ¢t € A, (7), we define
the convolution (f*;g)(t) by the right-hand side of (4.8).

In order to estimate the new convolution (f¥;g)(t) on Sy(r]UA, (r), the following
function is very useful. We set

h(t) = ([tF — 5| + [to")V/*,  t € Ay, (r).
Lemma 4.12.
(1) If 0 < |I| < w/2k and 6 € I hold, we have
27VER(t) < [t| < h(t), te Ay(r

)
Ay (r)). Then we have

) € H(Si(r] U Ay (1)) and g(t) € H(Sr(r]
t 0 hold on Si(r), we

U
f H(S1(r] U Ay, (r). If f(t) = 0 and g(t)

have (f*rg)(t) =0 on Sp(r] U Ay (7).
(3) Let f(t) € H(S1(r]UAy (r)) and g(t) € H(S1(r] U A, (r)). Suppose that g(t) =0
holds on St(r) and that
A a—k
‘f(t)| < F(Oé/k)|t| on S[(’f’],
9(0) < T30 on Au)
for some A >0, B> 0, a>0 and 8 > 0: then we have (f¥,g)(t) = 0 on Si(r]
and
- AB atfe
[(f*rg) ()] < Wh(t) TR on A, (7). (4.9)
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Proof. Let us show (1). Let t € Ay, (). We have [t| > r = |t|. Since t* —tf € Sgr(rF),
we have [tF — tk| < r*. Therefore, we see that

2" > rF + 0% > | + [tF — t§| = h(t)".
This proves the first inequality. The second inequality comes from
[tF = t*] < [t —1§] + [to]" = h(1)".

The part (2) is clear from the definition. (3) is already proved in [9, Lemma 6.4],
but for readers’ convenience, we give here a proof of (4.9).
Since the condition g(t) = 0 on Sy(r) is supposed, by (4.8) we have

(fFrg)(t / F(EF = 78R Yg(T)drh on Ay, (r).
Let t € Ay, (r). By setting x = (7% — t§)'/, by integrating in 2 from 0 to (tF — tk)1/*

and by using the condition

h((t +2")V%) = (J(t6 +2*) — 6] + [to]*) /% = (|2]* + [to]*)/*

we have

|(f*9)(t)]

(th—thyL/k
= FUER — 5 — 2R RYg((8h 4 %) 1/R)dh

0
|th—tk|t/*

A B e )

< F(a/k)m (|tk —t§| _pk) /k 1(pk + |t0‘k)6/k 1dpk.

In addition, by setting y = p* + [to|* and then by setting y = (|[tk — t§| + |to|*)n we
have

I

(1#% = thl = M)/ 2 (0 + o)/

0
[t* —t6 | +]to*
< [ ey
0
1
(‘tk—tk|—|—|t| a/k+B8/k— 1/ a/k 1 B/k 1d1]
0

_ atB—k B, _ a+B—k ['(a/k)(B/k)

This proves (4.9). O
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More generally, if we take 0 < 71 < r, we can define the new convolution (f%g)(t)
on Sy(r) UAy (r1) in the same way, and we have the same results as in Lemma 4.12.
In addition, we have the following lemma.

Lemma 4.13. Letr > 0,0 € I, to = re’® and 0 < ry < r. Let f(t) € H(S;(r] U
Ay (r1)) and g(t) € H(S1(r]U Ay, (r1)). If

FO1 < gt on Silr) 1701 < T ghl)" ™ on Auy(r),
900 < g7 on Sl a0 < (7 on Ay ()

hold for some A > 0, B > 0, « > 0 and 8 > 0, then we see that (f¥,g)(t) €
H(S1(r]U Ay, (r1)) and satisfies the estimate

AB -
Mg oSt
|(f*kg)(t)] < (4.10)

r* 4} AB s
e+ ) T on Aulr)

Proof. In the case t € S;(r], the new convolution is the same as the usual convolution,
and so the first inequality of (4.10) follows from Lemma 3.4. Let us show the second
inequality of (4.10).

Take any t € Ay, (r1) and fix it. We have [to|¥ = 78 > vk > [tF—tf|, |to|F—|tF —t&| >
r® — 7k >0 and h(t) < (r* + %)%, By the definition we have

g = [ 2= Mgrrart

(k= th)1 /s
t

+ / S — 7)) g(r)ydr® + / F)g((tF — 74)F)drk

=L+ I+ I

The parts I and I3 are estimated in the same way as (4.9) and we have

|Ii| < AiB
I'((a+B)/k)

Let us estimate I;. We take the integration route so that 7 = (pt§ + (1 —p)(t* —t§))/*
with p: 0 — 1. Then, we have (t* — 7%)%/*¥ € S;(r] and 7 € S;(r], and

h(#)*TPF on Agy(r1), i=2,3. (4.11)

A|tk _ Tk|a/k:—1 A a/k—-1

tk_ k\1/k < < 1— tk tlc_ k

P =7 < S < g (= ol 4 pltt =)
B|,rk|ﬁ/k:71

B8/k—1
(pltol* + (1 — p)[t* — 7*)) /"

B
9= rarm = e
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Since d7* = (tf — (t* — tf))dp, we have
jdr"| = [t5 — (t* — t6)ldp < ([tol® + [t* — t5])dp < (+* +r})dp.

Therefore, we have

1

’/‘ +ry k E a/k—1
I t t
< 22 (= ol + ol i)
0

B/k=1
x (pltol* + (1 = p)It* —t51) dp.
Here, we set y = plto|¥ + (1 — p)[t* — tE|. Then we have

= (Itol" = It" = t5)dp > (" — 1¥)dp,

[to|*

AB(rk +17) k k k - _ dy
oAbl +ry) &,y ek e k=1, 8/k=1__9Y
< o [ ==y —

[th—th|
[t* —t& | +[to]”

dy
th gk (g [k — ) k1 B k1
(1 ol +1tol” —y) Yy )

= T(a/ATG/H)
k 7Jc
~ T I~ 51 ol B )
(rF +77) AB

= = @ AT (112

By (4.11) and (4.12), we have the second inequality of (4.10). O

Thus, in the case 0 < 71 < r (being fixed), by setting Cy = 2+ (r* +1¥)/(r* —rF)
and

a—k
1 t(la/k) n S5(r],
"/’a(t) =
h(t)*—k A
C, T(a/k) " (r1)

for a > 0, we have the following result.

Corollary 4.14. Letr > 0,0 € I, tg = e’ and 0 < ry < r. Let f(t) € H(S;(r]U
Au(m)) and g(t) € H(S1(r] U Ay (). IF 1(0)] < Ava(t) and |g(5)] < Bun(t) hold
on Si(r]U Ay (r1) for A>0,a >0, B> 0 and b > 0, then we have |(f*rg)(t)| <
ABtatb(t) on Sr(r] U Ay, (r1).
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In equation (2.1), estimates in the assumptions are given in the form

A —k &
< |t .
”a(t)”f’ = F(n/k) ‘t| exp(c|t| ) on Sy

By applying (1) of Lemma 4.12 to this estimate we have [la(t)]|, < A9y (t) on
Sp(r] U Ay (1) with Ay = CyHAexp(2¢r®) and H = max{1,2'~"/F}. Conversely,
the estimate ||a(t)||, < A1¢,(t) on Sr(r] U Ay (r1) implies the estimate ||a(t)], <
(H/C1)A|t|" % /T(n/k) on Sr(r] U Ay (r1).

Thus, we see that almost all the arguments in the usual case work also for the new
convolution if we use ¥, (t) (n=1,2,...) instead of ¢, (¢;¢) (n =1,2,...).

4.5. PROOF OF PROPOSITION 4.5

Let 7 > 0 and R > 0. We denote by H((Sr(r]U A, (r)) x Dg) the set of all functions
f(t, ) belonging to 2 ((Sr(r] U Ay, (r)) x Dg) that are holomorphic in (Sy(r) U
Au(r)) x DS,

For two functions f(¢,z) and g(¢,z) in H((S;(r] U Ay (r)) x Dg), we define the
new convolution (f%g)(t, ) with respect to ¢ in the same way as in Definition 4.11,
regarding z as a parameter.

In this section, we will prove Proposition 4.5 by considering the following
new-convolution equation

P(kt* z)u = f(t,z) + Z iy (t, @)%k (M o[07u])

i+|a|<m
+ S bty [ (Malocu)) ™ (4.13)
> i+iaj<m

on (S7(rJUAs, (r)) x Dr. We note that this is the same as (2.1) on (Sy(r]ULg(2/*r)) x
Dg, but on A, (r) x Di we are using the new convolution %g.

Proof of Proposition 4.5. Let u(t,x) € 2 ((Sr(r] U Ly(2'/*r)) x Dg) be a solution
of equation (2.1) on (S7(r] U Ly(2'/%r)) x Dg for some 6 € I and r > ro which is
holomorphic on S (r) x D%, and suppose that |u(t,z)| < Mo|t[*~* holds on S;(r]x Dg
for some My > 0.

We set tg = re?, take any 71 > 0 (with 79 < r; <), and set

ug(t,z) = u(t,z), if (t,x) € Si(r] x Dg,
) u(to,z), if (t,z) € Ayy(r1) X Dpg.

We have ug(t,z) € H((S7(r] U A, (r1)) x Dr) and ug(t,x) = u(t,z) on Sr(r] x Dg.
Take an R; > 0 sufficiently small. Let us look for an extension u* (¢, z) on (Sy(r]U

Ay, (r1)) X Dpg, as a solution of equation (4.13) in the form:

u (t,x) = ug(t,x) +w(t,x), w(t,z)=0on Si(r)x Dg,.
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Then, by the same calculation as in (4.6) and (4.7), equation (4.13) is reduced to the
following new-convolution equation with respect to the unknown function w:

P(ktt, x)w = g(t,z) + Z (ai,0(t, z) + hio(t, @) ke (A0 [05W])
i+|al<m

i o (4.14)
+ Y altom [ (Maogw) ™

S i+lal<m

on (S1(r]UA (1)) % Dy, where g(t,2) € H((S1(]UAw (1)) x D,) with g(t, z) = 0
on S;(r) X Dg,, and h; o(t,z) (1 + |a] < m) and ¢, (¢, z) (Jv| > 2) are given by the
same formulas as in (4.7) (with uext (¢, ) replaced by wug(t, x)).

Since w(t,z) = 0 on Si(r) x Dpg, is supposed, by (2) of Lemma 4.12 we have
(wpw)(t) = 0 on (Sr(r]UA¢,(r1)) X Dg,. Hence, under the condition w(¢,z) = 0 on
Si(r) x Dpg,, equation (4.14) is reduced to the linear equation

P(kt*, z)w = g(t,z) + Z (ai,0(t, ) + hia(t, @))% (Mo [05W]). (4.15)

it+|a|<m

This equation is much easier than (4.14).
Thus, by the same argument as in the proof of Proposition 4.10 and by using
Corollary 4.14 we have the following proposition.

Proposition 4.15. Under the above situation, equation (4.15) has a solution w(t, )
€ H((S1(r]U A, (r1)) x D,) for some p >0 (0 < p < Ry) which satisfies w(t,x) =0
on Si(r) x D,, and

lw@)ll, < My, () on Si(r] U Ay, (r1)
for some p1 >0 and M > 0.

Now, let us complete the proof of Proposition 4.5. We set
u*(t,x) = ug(t,z) +w(t,z) on (Sr(r]UAs(r1)) x D,.

Then, we see that u*(t,z) € H((Sr(r]UA (1)) x D,), u*(t, x) = u(t,x) on Si(r)x D,,
and u* (¢, z) is a solution of equation (4.13). Thus, to complete the proof of Proposition
4.5 it is enough to show that u*(¢,x) = u(t,x) holds on Ly((r* + r¥)1/¥) x D,. This
is verified as follows.

Since (4.13) is the same as (2.1) on Lg((r* + r)Y/*) x D,, two functions
u*(t,x) and u(t,r) are solutions of (2.1) on Lg((r* + r¥)}/*) x D, and they satisfy
u*(t,z) = u(t,z) on Lg(r) x D,. Hence, by Proposition 4.4 we have u*(¢t,z) = u(t, x)
on Lo((r* +r¥)Y/*) x D,,. O

4.6. PROOF OF LEMMA 4.6

Let S be an open subset of Cy, and let u(t,z) € 2°(S x Dgr). Suppose that u(t, z) is
holomorphic on S x D for some 0 < p < R. Let us show that u(t,z) is holomorphic
on § x DS,



770 Hidetoshi Tahara

Since u(t,z) € 2 (S x Dpg) is supposed, u(t,z) is holomorphic with respect to
x € D%, and by Taylor expansion in  we have the expression

u(t,z) = Y ua(t)z®, tes. (4.16)

|| =0

Since u(t, z) is holomorphic on S x D, we can regard this as Taylor expansion of the
holomorphic function on S x D7 and we have the condition that u,(t) (|a| > 0) are
holomorphic functions on S.

Take any K € S and 0 < Ry < R; we have |u(t,z)] < M on K x Dg, for some
M > 0 and by Cauchy’s inequality we have the estimates |uq(t)] < M/R‘la| on K.
Then, the series (4.16) is uniformly convergent on any compact subset of K x Dp .
Since uq(t) (o] > 0) are holomorphic functions on S, this shows that wu(t,z) is
holomorphic on K° x Dg, .

Since K and R; are taken arbitrarily, we have the result that u(¢, z) is holomorphic
on S x Dg,. O

5. A GENERALIZATION

In the previous sections, we have proved Theorem 2.2 under the condition that & > 0,
w>0,piq>0(i+|al <m)and g, > 0 (Jv| > 2) are integers. In this section we will
generalize Theorem 2.2 to the case where k > 0, u > 0, pio > 0 (i + |a] < m) and
qv > 0 (J¥| > 2) are not necessarily integers.

As before, we consider the equation

P(kt*, z)u = f(t,x) + Z a; o(t, @) %5 (M; 0|05 u])

it+|a|<m
+ > byt @) H My o [00u]) (5.1)
v|>2 i+|a|<m

We suppose the conditions (A4s), (A3), (A4) and the following:

(A7) k> 0is a real number, and 0 < |I| < 27/k;
(Af) there are positive numbers g > 0, p; o > 0 (i + || < m) and ¢, > 0 (Jv]| > 2)
such that the estimates

F
|f(t )| F( /]f) |t|uik exp(c\t|k) on SI X DRO)
A; )
|a; o (t, z)] < (7/]9’)“ Pia™ exp(c|t|k) on Sy x Dg, (i + |a| < m),
B,

|t|% ~* exp(c|t|¥) on S; x Dg, (Jv| >2)

by 2)] < T

hold for some ¢ >0, F' >0, A; o >0 (i +|a| <m) and B, >0 (Jv| > 2);
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(A§) moreover, there is a d > 0 such that k/d € N, u/d € N, p; o/d € N (i+|a| < m),
qv/d € N (Jv] > 2), and that the sum

Z B, t/dxV|
lv[=2
is convergent in a neighborhood of (¢, X) = (0,0) € C2.

Under these assumptions, we define s, sp, So and x > 0 by the same formulas as
in Section 2. Then, we obtain the following result.

Theorem 5.1. Suppose the conditions (A7), (Az2), (As), (A4), (A%) and (AF). Let
A(x), ..., Ai(z) be the roots of P(\,x) =0, and assume that

Ai(0)=0 or X(0)eC\n(Sks) fori=1,2,...,L

If u(t, x) is a holomorphic solution of equation (5.1) on S;(8) X Dg, for some § > 0,
and if it satisfies |u(t,z)| < Mo|t|*=* on S;(8) x Dgr, for some My > 0, then u(t, )
has an analytic continuation u*(t,z) on Sy x Dg for some 0 < R < Ry such that

M - K
W |t|'u kexp(b|t| ) on S] X DR

holds for some M >0 and b > 0.

[u™(t,z)| <

As is seen in the proof of Theorem 2.2, the essential part of the proof lies in the
construction of a solution on S; x Dg. In the present case, the following is the key
proposition:

Proposition 5.2. Suppose the condition

AL(0), ..., A (0) € C\ 7(Sk). (5.2)

Then, equation (5.1) has a formal solution

u(t,z) = Z U (t, )

n>p/d

(we note that p/d is a positive integer) which satisfies the following properties:
(1) un(t,x) (n > p/d) are holomorphic functions on Sy x D, for some p > 0;
(2) there are C >0 and h > 0 such that

Chm =D

G+ I Ty 1 expleltl) on S x D,

|un(t, )] <

holds for any n > p/d and s > max{s,, sp}.
We note that if we set

kl = k/dv H1 = .u/d7 Pi,a,1 :pz,a/d and qv,1 = QD/d
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these k1, i1, Dia1 (i 4 |a| <m) and g1 (Jv| > 2) are positive integers. We set

i+ ol -1
Sq.1 =1 +max |0, max ( - ) )
i1 [ (i,a) €Aa \ Pia1 +K1(1+ |a| — 1) ]

m, —
=1 0, ( - ) :
*m”[ ved, \ g1 + k1 (W) + (o] — 1) }

Then, we have s, 1 —1 = d(sq —1) and s51 —1 = d(sp — 1). Therefore, Proposition 5.2
is written as follows.

Proposition 5.3. Suppose the condition (5.2). Then, equation (5.1) has a formal
solution
u(t,z) = Z Un (t, ) (5.3)

which satisfies the following properties:
(1) up(t,z) (n > p1) are holomorphic functions on Si(r) x D, for some p > 0;
(2) there are C > 0 and h > 0 such that

Ch™ nls1—1

[un(t,z)| < (|t[k + 1)! I‘(dn/k‘)

|t exp(c|t|*) on Sr(r) x D,

holds for any n > p1 and s1 > max{sq.1, 5,1}

Proof. The formal solution (5.3) is determined by a solution of the following recurrent
formulas:

P(ktka x)ulu = f(ta :E)7
and for n > p; + 1

P(ktk’x)un = Z ai,a(t,l‘) *e ('///i,a[8§unfpi,a,17k1[i+\a|7l]+])

it+|a|<m
5 Vi,(x*k
+ ) Soobtaysw [ I (Aeldfu,.p))-
2<v|<n—qu,1 qu1+|n(v)| i+|a|<m j=1
+k1(v)=n
If we use the functions
6ulti0) = S expleltl), = 1,2
n(t;¢) = =—————exp(c , n=1,2...
T(dn/k) <P
the part (2) can be proved in the same way as in the proof of Proposition 3.3. O

Thus, by modifying the arguments in Sections 3 and 4 suitably we can give a proof
of Theorem 5.1. We may omit the details.
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