PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple synthesis of Black TiO2 Nanofibers Via Calcination in Inert Atmosphere

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Black TiO2 nanofibers have recently emerged as a promising material that has both advantages of black metal oxide and one-dimensional nanostructure. However, current reduction-based synthesis approaches are not compatible with practical applications because these processes require high process costs, complicated processes, and sophisticated control. Therefore, it is still necessary to develop a simple and facile method that can easily introduce atomic defects during the synthesis process. This work suggests an electrospinning process with an antioxidant and subsequent calcination process for the facile synthesis of black TiO2 nanofibers. The synthesized black TiO2 nanofiber has an average diameter of 50.3 nm and a rutile structure. Moreover, this nanofiber represented a noticeable black color and a bandgap of 2.67 eV, clearly demonstrating the bandgap narrowing by the introduced atomic defects.
Słowa kluczowe
Twórcy
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
autor
  • University of Nevada, Department of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, NV 89154, United States
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Bibliografia
  • [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15.5, 353-389 (2003).
  • [2] G.-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, J. Alloys Compd. 806, 1060-1067 (2019).
  • [3] M. Ji, Y.-H. Choa, Y.-I. Lee, Ultrason. Sonochem. 74, 105557 (2021).
  • [4] X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 331, 746-750 (2011).
  • [5] S. Bai, N. Zhang, C. Gao, Y. Xion, Chem. Eng. J. 343, 708-736 (2018).
  • [6] I. Zada, W. Zhang, P. Sun, M. Imtiaz, N. Iqbal, U. Ghani, R. Naz, Y. Zhang, Y. Li, J. Gu, Q. Liu, D. Pantelic, B. Jelekovic, D. Zhang, Appl. Mater. Today 20, 100669 (2020).
  • [7] S. Kang, T. Im, M. Koh, C. Sunyong, J. CO2 Util. 41, 101230 (2020).
  • [8] A. Lepcha, C. Maccato, A. Mettenborger, T. Andreu, L. Mayrhofer, M. Walter, S. Olthof, T.-P. Ruoko, A. Klein, M. Moseler, K. Meerholz, J.R. Morante, D. Barreca, S. Mathur, J. Phys. Chem. C 119, 18835-18842 (2015).
  • [9] S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53, 296-336 (2018).
  • [10] Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He, F. Huang, J. Power sources 325, 697-705 (2016).
  • [11] S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Chem. Eng. J. 343, 708-736 (2018).
  • [12] S.G. Ullattil, P. Peryat, J. Mater. Chem. A 4, 5854-5858 (2016).
  • [13] L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D.-J. Liu, T. Xu, Inorg. Chem. 52, 3884-3890 (2013).
  • [14] S. Chen, Y. Xiao, Y. Wang, Z. Hu, H. Zhao, W. Xie, Nanomaterials 8, 245 (2018).
  • [15] Z. Gu, Z. Cui, Z. Wang, T. Chen, P. Sun, D. Wen, Appl. Surf. Sci. 544, 148923 (2021).
  • [16] X. Zhou, E.M. Zolnhofer, N.T. Nguyen, N. Liu, K. Meyer, P. Schmuki, Angew. Chem. 127, 13583-13587 (2015)
  • [17] J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298-5415 (2019).
  • [18] Y. Iida, S. Ozaki, J. Am. Ceram. Soc. 44.3, 120-127 (1961).
  • [19] H. Albetran, B.H. O’Connor, I.M. Low, Appl. Phys. A 122.4, 1-9 (2016).
  • [20] H. Albetran, B.H. O’Connor, I.M. Low, Mater. Des. 92, 480-485 (2016).
  • [21] S. Challagulla, K. Tarafder, R. Ganesan, S. Roy, Sci. Rep. 7.1, 1-11 (2017).
  • [22] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 5, 3601-3614 (2013).
  • [23] A. Sinhamahapatra, J.-P. Jeon, J.-S. Yu, Energy Environ. Sci. 8, 3539-3544 (2015).
  • [24] L. Han, B. Su, G. Liu, Z. Ma, X. An, Mol. Catal. 456, 96-101 (2018).
  • [25] H. Zhang, J. Cai, Y. Wang, M. Wu, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, Z. Jiang, J. Gong, Appl. Catal. B 220, 126-136 (2018).
  • [26] Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Chem. Eng. J. 379, 122295 (2020).
  • [27] A. Sarkar, G.G. Khan, Nanoscale 11, 3414-3444 (2019)
Uwagi
1. This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dfb9f78-49b8-4feb-823d-87a6cccc78f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.