Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let I = [0, 1], and let bB1 be the set of Baire-1 self-maps of I. For f ∈ bB1, let Λ(f) = ⋃x∈I ω(x, f) be the set of ω-limit points of f . We prove the following: - There exists a residual subset S of bB1 such that for any f ∈ S and x ∈ I the ω-limit set ω(x, f) is contained in the set of points at which f is continuous, and ω(x, f) is an∞-adic adding machine. - There exists a residual subset S of bB1 such that for any f ∈ S and for any ε > 0 there exists a natural number M such that fm (I) ⊂ Bε(Λ(f)) whenever m > M. Moreover, f : Λ(f) → Λ(f) is a bijection.
Wydawca
Czasopismo
Rocznik
Tom
Strony
59--64
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Mathematics, Weber State University, Ogden, UT 84408-2517, USA
Bibliografia
- [1] S. J. Agronsky, A. M. Bruckner and M. Laczkovich, Dynamics of typical continuous functions, J. Lond. Math. Soc. (2) 40 (1989), 227-243.
- [2] N. C. Bernardes and U. B. Darji, Graph theoretic structure of maps of the Cantor space, Adv. Math. 231 (2012), 1655-1680.
- [3] L. Block and W. Coppel, Dynamics in one Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1991.
- [4] L. Block and J. Keesling, A characterization of adding machines, Topology Appl. 140 (2004), 151-161.
- [5] A. Blokh, The spectral decomposition for one-dimensional maps, in: Dynamics Reported. Expositions in Dynamical Systems. New series. Vol. 4, Springer, Berlin (1995), 1-59.
- [6] A. M. Bruckner, J. B. Bruckner and B. S. Thomson, Real Analysis, Prentice-Hall, Upper Saddle River, 1997.
- [7] A. M. Bruckner and G. Petruska, Some typical results of bounded Baire-1 functions, Acta Math. Hungar. 43 (1984), 325-333.
- [8] J. Buescu and I. Stewart, Lyapunov stability and adding machines, Ergodic Theory Dynam. Systems 15 (1995), 271-290.
- [9] E. D’Aniello, U. Darji and T. H. Steele, Ubiquity of odometers in topological dynamical systems, Topology Appl. 156 (2008), 240-245.
- [10] H. Lehning, Dynamics of typical continuous functions, Proc. Amer. Math. Soc. 123 (1995), 1703-1707.
- [11] Z. Nitecki, Topological Dynamics on the Interval, Progr. Math. 21, Birkhäuser, Basel, 1982.
- [12] T. H. Steele, Continuity and chaos in discrete dynamical systems, Aequationes Math. 71 (2006), 300-310.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9df4c068-c9e5-4f21-95a7-800897c1f61a