PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of combustion process with jet-ignition of propane-air mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the study of combustion process of a homogenous lean propane-air mixture in the cylindrical combustion chamber ignited by a hot gas jet from the pre-ignition chamber. A rich propane-air mixture in the pre-chamber is ignited by the spark plug and the exhaust gasses flow from the chamber trough the holes in the wall. The mathematical model of gas exchange and energy balance in chambers with a laminar finite-rate model taking into account the two-step Arrhenius chemical kinetics is presented. The work presents results of thermodynamic parameters of the charge obtained in CFD simulations in Fluent and Kiva3v for three configurations: with one hole in the wall of the ignition chamber, with three holes and without an ignition chamber. Modelling and simulation have shown faster burning of the mixture for jet ignition with three holes of the pre-chamber. The results of simulations were verified by experimental studies in the combustion chamber of the same geometry by the Schlieren method. The work presents flame front propagation, pressure traces and pressure increment speed for two mixtures with a different equivalence fuel-air ratio. Experimental results proved the simulation observation of faster flame propagation in the main chamber with three holes.
Rocznik
Strony
533--543
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Automobiles and Internal Combustion Engines, Cracow University of Technology, 37 Jana Pawla II Ave., 31-864 Cracow, Poland
autor
  • Institute of Automobiles and Internal Combustion Engines, Cracow University of Technology, 37 Jana Pawla II Ave., 31-864 Cracow, Poland
autor
  • Institute of Automobiles and Internal Combustion Engines, Cracow University of Technology, 37 Jana Pawla II Ave., 31-864 Cracow, Poland
Bibliografia
  • [1] A.K. Oppenheim, “Dynamic features of combustion”, Phil. Trans. R. Soc., Lond. A 315 (1534), 471-508 (1985).
  • [2] R.H. Guirguis, A.K. Oppenheim, I. Karasalo, and J.R. Creighton, “Thermochemistry of methane ignition”, Combustion in Reactive Systems, Progress in Astronautics and Aeronautics 76, 134-153 (1981).
  • [3] J.W. Meyer and A.K. Oppenheim, “Coherence theory of the strong ignition limit”, Combustion and Flame 17 (1), 65-68 (1971).
  • [4] A.K. Oppenheim, “The knock syndrome-its cures and its victims”, SAE Technical Paper 841339, CD-ROM (1984).
  • [5] A.F. Ghoniem, A.J. Chorin, and A.K. Oppenheim, “Numerical modelling of turbulent flow in a combustion tunnel”, Phil. Trans. R. Soc. Lond. A 304 (1484), 303-325 (1982).
  • [6] M-Z. Pindera and L. Talbot, “Flame induced vorticity: effects of stretch”, Symp. (Int.) on Combustion 21 (1), 1357-1366 (1988).
  • [7] A.K. Oppenheim, J. Beltramo, D.W. Faris, J.A. Maxson, K. Horn, and H.E. Stewart, “Combustion by pulsed jet plumeskey to controlled combustion engines”, SAE Technical Paper 890153, CD-ROM (1989).
  • [8] A.K. Oppenheim, “Quest for controlled combustion engines”, SAE Technical Paper 880572, CD-ROM (1988).
  • [9] R. Latsch, “The swirl-chamber spark plug: a means of faster, more uniform energy conversion in the spark-ignition engine”, SAE Technical Paper 840455, CD-ROM (1984).
  • [10] A.K. Oppenheim, “Method and system for controlled combustion engines”, U.S. Patent No. 4,924,828, May 15, 1990.
  • [11] A.K. Oppenheim and J.A. Maxson, “Thermodynamics of combustion in an enclosure”, 13th Int. Colloquium and Dynamics of Explosions and Reactive Systems 1, CD-ROM (1991).
  • [12] I.A.M. Sayed, T. Lezanski, and P. Wolanski, “Performance of a pulsed jet combustion system in a swirl and in a turbulent field”, 13th Int. Colloquium on Dynamics of Explosions and Reactive Systems 1, CD-ROM (1991).
  • [13] A. Kowalewicz and M. Wojtyniak, “Natural gas engines - problems and challenges”, J. Kones. Powertrain and Transport 14 (2), 273-282 (2007).
  • [14] Z. Stelmasiak and J. Semikow, “The possibilities of improvement of spark ignition engine efficiency trough dual fueling of methanol and gasoline”, Combustion Engines 3, 59-67 (2010).
  • [15] V.P. Zhukov, V.A. Sechenov, and A.Y. Starikovskiy, “Autoignition of kerosene (Jet-A)/air mixtures behind reflected shock waves”, Fuel 126, 169-176 (2014).
  • [16] V.V. Afanasiev, A.K. Kuzmin, S.A. Abrukov, V.N. Podymov, and S.V. Iljin, “Ignition of a fuel-air mixture a high speed plasma jet”, J. Engineering Physics and Thermophysics 67 (5-6), 1059-1061 (1994).
  • [17] http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion-ext.html
  • [18] Ansys-Fluent User’s Guide, Release 13.0, Ansys Inc., Canonsburg, 2011.
  • [19] S.I. Abdel-Maged, T. Leżański, T.J. Rychter, A. Teodorczyk, and P.Wolański, “Combustion jet ignition of a turbulent charge - a constant volume bomb study”, Archivum Combustionis 11 (3/4), 241-250 (1991).
  • [20] T. Rychter and A. Teodorczyk, “An evaluation of effectiveness of the combustion jet in a dual-chamber configuration”, Archivum Combustionis 4 (3), 225-226 (1984).
  • [21] T. Leżański, M. Kesler, T. Rychter, A. Teodorczyk, and P. Wolański, “Performance of pulsed jet combustion (pjc) system in a research engine”, SAE Technical Paper 932709, 1-14 (1993).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9df37a91-2b99-4a61-986d-e54e35cb2429
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.