PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quantitization parameter-based video quality assessment in MPEG codecs leveraging VMAF

Identyfikatory
Warianty tytułu
Konferencja
Konferencja Radiokomunikacji i Teleinformatyki (20-22.09.2023 ; Kraków, Polska)
Języki publikacji
EN
Abstrakty
EN
Video streaming systems are rapidly evolving. There is an increasing demand for high-resolution content such as full hd (FHD) and 4K (UHD). This high-resolution content requires high processing power and storage. Video coding technology is used to compress video content. There are encoding parameters that effect compression efficiency and video quality. It is important to explore those coding parameters which have an impact on video compression and quality. This paper considers MPEG-4, MPEG-AVC, and MPEG-HEVC codecs for testing. The video sequence is encoded using different rate control modes and bitrates. The quality of encoded videos is estimated using the video multimethod assessment fusion (VMAF) objective model. The results show that MPEG-AVC performs significantly better than other codecs. The results also confirm the strong relationship between encoding parameters and video quality. This study provides a foundation for building optimization models in the video quality domain. The study results will be utilized to build robust optimization models for video quality evaluations.
Słowa kluczowe
Rocznik
Tom
Strony
65--68
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • AGH University of Krakow, Kraków
  • AGH University of Krakow, Kraków
  • AGH University of Krakow, Kraków
Bibliografia
  • [1] CISCO, “Cisco Annual Internet Report (2018-2023) White Paper ,” 2020.
  • [2] S. Ling, Y. Baveye, D. Nandakumar, S. Sethuraman, and P. Le Callet, “Towards Better Quality Assessment of High-Quality Videos,” Dec. 2020, pp. 3–9. doi: 10.1145/3423328.3423496.
  • [3] F. Xie, M. Pourazad, P. Nasiopoulos, and J. Slevinsky, “Determining bitrate requirement for UHD video content delivery,” Dec. 2016, pp. 241–242. doi: 10.1109/ICCE.2016.7430597.
  • [4] A. Punchihewa and D. Bailey, “A Review of Emerging Video Codecs: Challenges and Opportunities,” in 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), 2020, pp. 1–6. doi: 10.1109/IVCNZ51579.2020.9290536.
  • [5] C. Iza Paredes, “Performance Comparison of H.265/HEVC, H.264/AVC and VP9 Encoders in Video Dissemination over VANETs,” 2022.
  • [6] I. Katsavounidis and L. Guo, “Video codec comparison using the dynamic optimizer framework,” in Applications of Digital Image Processing XLI, A. G. Tescher, Ed., SPIE, 2018, p. 107520Q. doi: 10.1117/12.2322118.
  • [7] N. Barman and M. Martini, “H.264/MPEG-AVC, H.265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming,” Mar. 2017. doi: 10.1109/QoMEX.2017.7965686.
  • [8] I. Khan, M. A. Ansari, S. H. Saeed, and K. Khan, “Evaluation and analysis of rate control methods for H.264/AVC and MPEG-4 video codec,” International Journal of Electrical and Computer Engineering, vol. 8, pp. 2788–2794, Apr. 2018, doi: 10.11591/ijece.v8i5.pp.2788-2794.
  • [9] Q. Fan, W. Luo, Y. Xia, G. Li, and D. He, “metrics and methods of video quality assessment: a brief review,” Multimed Tools Appl, vol. 78, Apr. 2019, doi: 10.1007/s11042-017-4848-x.
  • [10] B. García, L. López-Fernández, F. Gortázar, and M. Gallego, “Practical Evaluation of VMAF Perceptual Video Quality for WebRTC Applications,” Electronics (Basel), vol. 8, p. 854, Apr. 2019, doi: 10.3390/electronics8080854.
  • [11] G. Esakki, A. S. Panayides, V. Jalta, and M. S. Pattichis, “Adaptive Video Encoding for Different Video Codecs,” IEEE Access, vol. 9, pp. 68720-68736, 2021, doi: 10.1109/ACCESS.2021.3077313.
  • [12] M. A. Usman et al., “Suitability of VVC and HEVC for Video Telehealth Systems,” Computers, Materials & Continua, 2021.
  • [13] A. S. Panayides, M. S. Pattichis, M. Pantziaris, A. G. Constantinides, and C. S. Pattichis, “The Battle of the Video Codecs in the Healthcare Domain - A Comparative Performance Evaluation Study Leveraging VVC and AV1,” IEEE Access, vol. 8, pp. 11469–11481, 2020, doi: 10.1109/ACCESS.2020.2965325.
  • [14] T. Uhl, C. Hoppe, and J. H. Klink, “Modern Codecs by Video Streaming under Use DASH Technique: An Objective Comparison Study,” in 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2020, pp. 1-5. doi: 10.23919/SoftCOM50211.2020.9238324.
  • [15] D. Ashimov, M. G. Martini, and N. Barman, “Quality Assessment of Gaming Videos Compressed via AV1,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1–4. doi: 10.1109/QoMEX48832.2020.9123112.
  • [16] Z. Li, Z. Duanmu, W. Liu, and Z. Wang, “AVC, HEVC, VP9, AVS2 or AV1? — A Comparative Study of State-of-the-Art Video Encoders on 4K Videos,” 2019, pp. 162–173. doi: 10.1007/978-3-030-27202-9_14.
  • [17] A. V Katsenou, F. Zhang, M. Afonso, and D. R. Bull, “A Subjective Comparison of AV1 and HEVC for Adaptive Video Streaming,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 4145–4149. doi: 10.1109/ICIP.2019.8803523.
  • [18] Xiph“Xiph.org Test Media.” https://media.xiph.org/
  • [19] W. Wu and B. Song, “Just-noticeable-distortion-based fast coding unit size decision algorithm for high efficiency video coding,” Electron Lett, vol. 50, pp. 443–444, 2014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9df3489a-7b4e-4337-990f-273cd7eb031a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.