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Abstrat. A ring A is alled right (left) semihereditary if all �nitely generated right

(left) ideals of A are projetive. In this paper we onsider non-ommutative semi-

hereditary rings and show their onnetion with non-ommutative valuation rings.

We also present some riterion for a module to be �at.

1. Introdution

Historially semihereditary rings ome from homologial algebra and their

de�nition was �rst appeared in [1℄.

De�nition 1. [1℄ A ring A is alled right (left) semihereditary if all �nitely

generated right (left) ideals of A are projetive.

If a ring A is an integral domain, i.e. a ommutative ring without divisors

of zero, then semihereditary domains oinide with Prüfer domains. Prüfer

domains were de�ned in 1932 by H. Prüfer, and sine that time they play

a entral role in the development of the lassial ring theory. Reall that an

integral domain is alled a Prüfer domain if all its �nitely generated ideals

are invertible. Sine in the ase of integral domains any ideal is invertible

if and only if it is projetive, we obtain that any Prüfer domain is exatly

a semihereditary domain. Prüfer domains naturally arise from valuation rings

of �elds, sine for any prime ideal P of a valuation ring A the loalization

AP of A is a Prüfer domain. So semihereditary domains an be onsidered as

a global theory for lassial valuation rings.
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In the non-ommutative ase there are di�erent generalizations of valua-

tion rings. If we onsider invariant valuation rings of division rings whih

were introdued by Shilling in [6℄, then we obtain that any invariant valua-

tion ring is a semihereditary ring in the sense of de�nition 1. So semihered-

itary rings an be onsidered as some generalizations of Prüfer domains for

non-ommutative rings. Another generalization of non-ommutative valuation

rings were introdued and studied by Dubrovin in [3℄. These rings were named

Dubrovin valuation rings after him. In this non-ommutative valuation the-

ory any Dubrovin valuation ring of a simple Artinian ring Q is exatly a loal

semihereditary order of Q. So semihereditary orders an be onsidered as the

global theory for Dubrovin valuation rings. Dubrovin valuation rings found

a large appliations. More information about these rings and semihereditary

orders in simple Artinian rings an be found in the book [5℄.

Semihereditary rings are also interesting from homologial point of view,

sine they belong to the lass of rings with weak global dimension ≤ 1.

All rings onsidered in this paper are assumed to be assoiative with 1 �= 0,
and all modules are assumed to be unital. We write U(A) for the group of

units of a ring A, and D∗ for the multipliative group of a division ring D.

We refer to [4℄ for general material on theory of rings and modules.

2. Semihereditary rings and valuation rings

For the ase of non-ommutative rings there are di�erent generalizations for

valuation rings. First onsider the generalization whih was proposed in 1945

by Shilling [6℄, who extended the onept of a valuation on a �eld to that on

a division ring.

De�nition 2. Let G be a totally ordered group (written additively) with the

order relation ≥. Add to G a speial symbol ∞ suh that x+∞ = ∞+x = ∞
for all x ∈ G. Let D be a division ring. A valuation on D is a surjetive map

v : D → G ∪ {∞} whih satis�es the following relations:

1) v(0) = ∞,

2) v(xy) = v(x) + v(y);

3) v(x + y) ≥ min(v(x), v(y)), whenever x + y �= 0,

for any x, y ∈ D.

Then A = {x ∈ D : v(x) ≥ 0} is a ring whih is alled the (invariant)

valuation ring of D with respet to valuation v, and U = {u ∈ D∗ : v(u) = 0}
is alled the group of valuation units.

In the general ase we obtain the following de�nition.
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De�nition 3. [6℄ A subring A of a division ring D is alled an invariant

valuation ring of D if there is a totally ordered group G and a valuation

v : D → G of D suh that A = {x ∈ D : v(x) ≥ 0}.

The next proposition gives the basi properties of invariant valuation rings.

Proposition 1. Let A be an invariant valuation ring of a division ring D
with respet to a valuation v. Then

1. aA ⊆ bA or bA ⊆ aA for any a, b ∈ A.

2. Eah ideal of A is two-sided.

3. A is a right and a left Ore domain. Therefore it has a left and right

division ring of frations.

4. Any �nitely generated ideal of A is prinipal.

As an immediately onsequene of this proposition we obtain the following.

Proposition 2. Any invariant valuation ring of a division ring D is semi-

hereditary and Bézout ring.1

The following theorem gives the equivalent de�nitions of a invariant valu-

ation ring.

Theorem 1. Let A be a ring with a division ring of frations D whih is

invariant in D. Then the following statements are equivalent:

1. A is an invariant valuation ring of some valuation v on D.

2. For any element x ∈ D∗ either x ∈ A or x−1 ∈ A.

3. The set of prinipal ideals of A is linearly ordered by inlusion.

4. A is a uniserial ring.2

De�nition 4. A subring A of a division ring D is alled a total valuation

ring if for eah x ∈ D∗ we have x ∈ A or x−1 ∈ A.

Theorem 1 states that any invariant valuation ring is a total valuation ring,

but not onversely. Note that in the ase of integral domains the notions of

invariant valuation rings and total valuation rings are equivalent to the notion

of a lassial valuation ring of a �eld. Theorem 1 also states that any invariant

totally valuation ring is uniserial. War�eld [7℄ showed the onnetion of total

valuation rings with semihereditary rings in the ase of loal rings.

1Reall that a ring A is alled a right Bézout ring if any its �nitely generated ideal is

prinipal.
2Reall that a ring A is alled uniserial if all ideals of A are linearly ordered with respet

to inlusion.
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Theorem 2. For a loal ring A the following properties are equivalent:

(i) A is uniserial and semihereditary.

(ii) A is a total valuation ring.

The next type of non-ommutative valuation rings was introdued and

studied by Dubrovin [3℄.

De�nition 5. Let S be a simple Artinian ring. A subring A of S, with

Jaobson radial J(A), is alled a Dubrovin valuation ring if

1) A/J(A) is a simple Artinian ring;

2) for eah s ∈ S \ A there are a1, a2 ∈ A suh that sa1 ∈ A \ J(A) and

a2s ∈ A \ J(A).

Note that every Dubrovin valuation ring is a total valuation ring if and only

if A/J(A) is a division ring. Hene, if S is a �eld, then Dubrovin valuation

rings of S are exatly the usual valuation rings. The lass of Dubrovin valua-

tion rings is muh wider than the lass of total valuation rings. The following

theorem gives the basi haraterizations of Dubrovin valuation rings.

Theorem 3. [5℄ Let A be a subring of a simple Artinian ring Q. Then the

following onditions are equivalent:

(1) A is a Dubrovin valuation ring of G.

(2) A is a loal semihereditary order in Q.

(3) A is a loal Bézout order in Q.

3. Semihereditary rings and �at modules

While semisimple rings and hereditary rings are de�ned uniquely by their

projetive global dimension, for semihereditary rings we have the following

statement whih gives the equivalent haraterization of semihereditary rings.

Theorem 4. [2℄ Let A be a ring. The following onditions are equivalent:

1. A is a left semihereditary ring.

2. w.gl.dimA ≤ 1 and A is a right oherent ring.3

3. Every torsion-less right A-module is �at.

Note that semihereditary rings are not de�ned uniquely by the �atness

property. There are examples of rings with weak global dimension ≤ 1 whih

are not semihereditary. Note also that for any ring A, w.gl.dimA ≤ 1 if and

only if every ideal of A is �at. The riteria for modules to be �at are very

important. In this setion we give one of suh riteria.
3Reall that a ring A is alled right oherent if the diret produt of an arbitrary family

of opies of A is �at as a right A-module.
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Theorem 5. Let 0 → X → P → M → 0 be an exat sequene of right A-

modules, where P is projetive. Then the following statements are equivalent:

(1) M is a �at module.

(2) For any x ∈ X there is a θ ∈ HomA(P,X) with θ(x) = x.

(3) For any x1, x2, . . . , xn ∈ X there is a θ ∈ HomA(P,X) with θ(xi) = xi

for all i.

Proof.

(1) =⇒ (2). Let P be a projetive module, and M a �at module. By the

Kaplansky theorem (see e.g. theorem 5.5.1 [4℄), P is projetive if and only if

there is a system of elements {pi ∈ P : i ∈ I} and a system of homomorphisms

{ϕi}, ϕi : P → A suh that any element p ∈ P an be written in the form

p =
∑

i

pi(ϕi(p)),

where only a �nite number of elements ϕi(p) ∈ A are not equal to zero.

If x ∈ X, then x = pi1a1 + pi2a2 + . . .+ pimam, where ai = ϕi1(x) ∈ A. Let

I = Aa1+Aa2+ . . .+Aam. Sine M is �at, x ∈ X∩PI = XI, by the �atness

test (see e.g. proposition 5.4.11 [4℄). Therefore x =
∑

xjcj, where xj ∈ X and

cj ∈ I. Now eah cj =
∑
i

bijai, so x =
∑
i

x′iai, where x′i =
∑
j

xjbij . De�ne

θ : P → X by θ(pik) = x′k, while θ sends all the other system elements pi of

P into 0. Then

θ(x) = θ(

m∑

k=1

pikak) =

m∑

k=1

(θ(pik)ak) =

m∑

k=1

x′kak = x.

(2) =⇒ (1). Let x ∈ X ∩ PI, where I is a left ideal in A. Then x =
pi1a1 + pi2a2 + . . .+ pirar, where ai ∈ A. De�ne Ix = Aa1 +Aa2 + . . .+Aar,

whih is a �nitely generated left ideal in A. It is lear that Ix ⊆ I, and so

x ∈ XIx ⊂ XI. Let θ ∈ HomA(P,X) with θ(x) = x. Then x = θ(pi1)a1 +
θ(pi2)a2 + . . . + θ(pir)ar ∈ XIx. Therefore x ∈ X ∩ PI ⊆ XIx ⊆ XI. From

the �atness test (see e.g. proposition 5.4.11 [4℄) it follows that M is �at.

(2) =⇒ (3). This is proved by indution on n. Let x1, x2, . . . , xn ∈ X.

If n = 1, then the existene of θ follows from (2). Assume that n > 1 and

(3) holds for all k < n. Let θn : P → X be a homomorphism suh that

θn(xn) = xn. Let yi = xi − θn(xi) for i = 1, 2, . . . , n − 1. By indu-

tion hypothesis, there exists a homomorphism θ′ suh that θ′(yi) = yi for

i = 1, 2, . . . , n − 1. Now de�ne θ = θ′ + θn − θ′θn ∈ HomA(P,X). Then

θ(xn) = θ′(xn) + θn(xn) − θ′θn(xn) = θ′(xn) + xn − θ′xn = xn,



38 Nadiya Gubareni

θ(xi) = θ′(xi) + θn(xi) − θ′θn(xi) = θ′(xi) + (xi − yi) − θ′(xi − yi) =

= xi − yi + θ′(yi) = xi

for i = 1, 2, . . . , n− 1. So θ is a required homomorphism.

(3) =⇒ (2) follows by taking n = 1.

From this theorem it immediately follows the theorem whih was �rst

proved by Villamayor and was given by Chase in his paper [2℄.

Theorem 6. [2℄ Let 0 → X → F → P → 0 be an exat sequene of right

A-modules, where F is free with a basis {ei : i ∈ I}. Then the following

statements are equivalent:

(1) P is a �at module.

(2) For any x ∈ X there is a θ ∈ HomA(F,X) with θ(x) = x.

(3) For any x1, x2, . . . , xn ∈ X there is a θ ∈ HomA(F,X) with θ(xi) = xi

for all i.
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