PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of diffraction radiation processes on periodic metal-dielectric structures in millimeter wavelength range

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general approach to experimental modeling of Cherenkov and diffraction radiation in vacuum electron devices employing periodic metal-dielectric structures is presented. The potential benefits and drawbacks of this approach to the design of microwave devices are discussed. The approach is based on resemblance of electromagnetic properties between the modulated electron beam and the surface wave in a dielectric waveguide. A dedicated millimeter-wave experimental setup is developed and constructed.
Czasopismo
Rocznik
Strony
105--116
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs., Lyngby, Denmark
autor
  • Sumy State University, Rimskiy-Korsakov St. 2, 4007, Sumy, Ukraine
  • Sumy State University, Rimskiy-Korsakov St. 2, 4007, Sumy, Ukraine
autor
  • Sumy State University, Rimskiy-Korsakov St. 2, 4007, Sumy, Ukraine
  • Faculty of Science, University of Porto, 4169-007 Porto, Portugal
autor
  • Sumy State University, Rimskiy-Korsakov St. 2, 4007, Sumy, Ukraine
autor
  • Sumy State University, Rimskiy-Korsakov St. 2, 4007, Sumy, Ukraine
Bibliografia
  • [1] WHITAKER J., Power Vacuum Tubes Handbook, 3rd Ed., Technical Press, Morgan Hill, California, 2012.
  • [2] SAVICH M., High power tube solid-state laser with zigzag propagation of pump and laser beam, Proceedings of SPIE 9342, 2015, article ID 934216.
  • [3] http://vadiodes.com
  • [4] VOROB’YOV G.S., PETROVSKII M.V., KRIVETS A.S., Possible applications of quasioptical open resonant metal-dielectric structures in EHF electronics, Radioelectronics and Communications Systems 49(7), 2006, pp. 38–42.
  • [5] SAUTBEKOV S., SIRENKO K., SIRENKO Y., VERTIY A., YEVDOKYMOV A., Diffraction radiation phenomena: physical analysis and applications, [In] Sirenko Y., Velychko L. [Eds.], Electromagnetic Waves in Complex Systems, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 91, 2016, pp. 387–442.
  • [6] LIN ZHAO, HUI XIE, LONGGEN ZHENG, Electromagnetic properties analysis of multilayered structure of metal-dielectric nanofilms, Advanced Science Letters 5(1), 2012, pp. 64–68.
  • [7] VOROBYOV G.S., TZVYK A.I., PUSHKARYOV K.A., MAKEYEV O.S., Scattering of electron stream waves on metal-dielectric structures, Journal of Infrared, Millimeter, and Terahertz Waves 17(10), 1996, pp. 1761–1768.
  • [8] VOROBJEV G.S., ZHURBA V.O., PETROVSKY M.V., RYBALKO A.A., A setup for measuring spatial and waveguide characteristics of periodic metal-dielectric structures, Instruments and Experimental Techniques 53(4), 2010, pp. 536–538.
  • [9] KRIVETS A.S., PETROVSKYI M.V., TSVYK A.I., SHMAT’KO A.A., The Smith–Pursell effect amplification of the electromagnetic waves in an open waveguide with a metal-dielectric layer, Telecommunications and Radio Engineering 59(10–12), 2003, pp. 80–92.
  • [10] GINZBURG M.S., ZOTOVA I.V., KOVALEV N.F., SERGEEV A.S., Theory of stimulated Cherenkov emission from sheet relativistic electron beams in a uniform isotropic dielectric medium, Journal of Experimental and Theoretical Physics 77, 1993, pp. 893–900.
  • [11] TAMIR T. [Ed.], Integrated Optics, Springer-Verlag, Berlin, Heidelberg GmbH, 1975.
  • [12] TSVYK A.I., TSVYK L.I., Phenomenon of anomalous diffraction radiation in the metal-dielectric grating, 12th International Conference Microwave and Telecommunication Technology, September 9–13, 2002, Sevastopol, Ukraine, Weber, 194–195.
  • [13] BACCARELLI P., PAULOTTO S., JACKSON D.R., OLINER A.A., A new Brillouin dispersion diagram for 1-D periodic printed structures, IEEE Transactions on Microwave Theory and Techniques 55(7), 2007, pp. 1484–1495.
  • [14] BRILLOUIN L., Wave Propagation in Periodic Structures, McGraw–Hill, New York, NY, 1946.
  • [15] NENASHEVA E.A., TRUBITSYNA O.N., KARTENKO N.F., USOV O.A., Ceramic materials for use in microwave electronics, Physics of the Solid State 41(5), 1999, pp. 799–801.
  • [16] VOROBYOV G.S., PONOMAREV A.G., PONOMARYOVA A.A., DROZDENKO A.A., RYBALKO A.A., Application of focused charge-particle beams in manufacturing of nanocomponents, Telecommunications and Radio Engineering 69(4), 2010, pp. 355–365.
  • [17] BYEON K.-J., LEE H., Recent progress in direct patterning technologies based on nano-imprint lithography, The European Physical Journal Applied Physics 59(1), 2012, article ID 10001.
  • [18] RYBALKO A.A., RUBAN A.I., VOROB’EV G.S., DOROSHENKO D.YU., A setup for measuring characteristics of microwave electric vacuum devices with open resonance structures, Instruments and Experimental Techniques 58(4), 2015, pp. 515–519.
  • [19] ZHURBENKO V. [Ed.], Electromagnetic Waves, InTech, 2011.
  • [20] BRATMAN V.L., DUMESH B.S., FEDOTOV A.E., MAKHALOV P.B., MOVSHEVICH B.Z., RUSIN F.S., Terahertz orotrons and oromultipliers, IEEE Transactions on Plasma Science 38(6), 2010, pp. 1466–1471.
  • [21] WATT F., BETTIOL A.A., VAN KAN J.A., TEO E.J., BREESE M.B.H., Ion beam lithoqraphy and nanofabrication: a review, International Journal of Nanoscience 4(3), 2005, pp. 269–286.
  • [22] IONOV A.N., POPOV E.O., SVETLICHNYI V.M., PASHKEVICH A.A., Field electron emission from flat metal cathodes covered by thin polymer films, Technical Physics Letters 30(7), 2004, pp. 566–568.
  • [23] BELOUSOV YE.V., ZAVERTANNIY V.V., NESTERENKO A.V., The diode slit L-cathode electron gun, Telecommunications and Radio Engineering 66(1), 2007, pp. 69–78.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9df1f60a-f7fb-40b6-aa1d-544d31c1d295
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.