PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Load distribution analysis on foot surface allows knowing human mechanical behavior and aids the doctor in the detection of gait disorders like, the risk of foot ulcerations, leg discrepancy, and footprint alterations. Plantar pressure data combined with techniques that use integral reasoning produce easy understanding medical tools for assisting in treatment, early detection, and the development of preventive strategies. The present research compares the classification of human plantar foot alterations using Fuzzy Cognitive Maps (FCM) trained by Genetic Algorithm (GA) against a Multi-Layer Perceptron Neural Network (MLPNN). One hundred and fifty-one subject volunteers (aged 7–77) were classified previously with the flat foot (n = 70) and cavus foot (n = 81) by specialized physicians of the Piédica diagnostic center. The trial walking was conducted using plantar pressure platforms FreeMed®. The foot surface was divided into 14 areas that included toe 1 st to 5th, metatarsal joint 1st to 5th, lateral midfoot, medial midfoot, lateral heel, and medial heel. Pressure data were normalized for each area. Better performance in the classification using small amounts of data were found by using Fuzzy rather than non-Fuzzy approach.
Twórcy
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada –Instituto Politécnico Nacional, Querétaro, Mexico
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada –Instituto Politécnico Nacional, Querétaro, Mexico
  • Department of Information Technology, Széchenyi István University, Gyor, Hungary; Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
  • Department of Information Technology, Széchenyi István University, Gyor, Hungary
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada –Instituto Politécnico Nacional, Querétaro, Mexico
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, Mexico
Bibliografia
  • [1] Abdullah M, Bhirud S, Afshar M. Disease diagnosis using soft computing model: a digest. Int J Comput Appl 2014;102 (10):43–7.
  • [2] Fatima M, Pasha M. Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl 2017;09(01):1– 16.
  • [3] Sujamol S, Ashok S, Kumar UK. Study of fuzzy cognitive maps for modeling clinical support systems 2018;119 (12):15433–45.
  • [4] Bautista JAR, Cárdenas SLC, Zavala AH, Huerta-Ruelas JA. Review on plantar data analysis for disease diagnosis. Biocybern Biomed Eng 2018;8.
  • [5] Ren P, et al. Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition. IEEE Trans Biomed Eng 2017;64(1):52–60.
  • [6] Jie B, Liu M, Liu J, Zhang D, Shen D. Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer's disease. IEEE Trans Biomed Eng 2017;64(1):238–49.
  • [7] Liu M, Zhang J, Adeli E, Shen D. Joint classification and regression via deep multi-task multi-channel learning for alzheimer's disease diagnosis. IEEE Trans Biomed Eng 2018;66(5):1195–206.
  • [8] Pauk J, Daunoraviciene K, Ihnatouski M, Griskevicius J, Raso JV. Analysis of the plantar pressure distribution in children with foot deformities. Acta Bioeng Biomech 2010;12(1):29–34.
  • [9] Deschamps Kevin, Matricali Giovanni Arnoldo, Roosen Philip, Desloovere Kaat, Bruyninckx Herman, Spaepen Pieter, et al. Classification of forefoot plantar pressure distribution in persons with diabetes: a novel perspective for the mechanical management of diabetic foot? PLoS One 2013;8(11).
  • [10] Goulermas JY, Findlow AH, Nester CJ, Howard D, Bowker P. Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data. Biomed Eng IEEE Trans 2005;52(9):1549–62.
  • [11] Fu W, Fang Y, Liu DMS, Wang L, Ren S, Liu Y. Surface effects on in-shoe plantar pressure and tibial impact during running. J Sport Med Allied Health Sci Off J Ohio Athl Train Assoc 2015;4(4):384–90.
  • [12] Ramirez-Bautista JA, Huerta-Ruelas JA, Chaparro-Cardenas SL, Hernandez-Zavala A. A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE Rev Biomed Eng 2017;10:299–309.
  • [13] Abdul Razak AH, Zayegh A, Begg RK, Wahab Y. Foot plantar pressure measurement system: a review. Sensors (Switzerland) 2012;12(7):9884–912.
  • [14] Tan AM, Fuss FK, Weizman Y, Woudstra Y, Troynikov O. Design of low cost smart insole for real time measurement of plantar pressure. Procedia Technol 2015;20(May 2016):117–22.
  • [15] Sutkowska E, Sutkowski K, Sokolowski M, Franek E, Dragan S. Distribution of the highest plantar pressure regions in patients with diabetes and its association with peripheral neuropathy, gender, age, and BMI: one centre study. J Diabetes Res 2019;2019:1–11.
  • [16] Martínez-Martí Fernando, Ocón-Hernández Olga, Martínez- García María Sofía, Torres-Ruiz Francisco, Martínez-Olmos Antonio, Carvajal Miguel A, et al. Plantar pressure changes and their relationships with low back pain during pregnancy using instrumented insoles. J Sensors 2019;2019:19–25.
  • [17] Said AM, Justine M, Manaf H. Plantar pressure distribution among older persons with different types of foot and its correlation with functional reach distance. J Nanomater 2016;2016.
  • [18] Bonanno DR, Ledchumanasarma K, Landorf KB, Munteanu SE, Murley GS, Menz HB. Effects of a contoured foot orthosis and flat insole on plantar pressure and tibial acceleration while walking in defence boots. Sci Rep 2019;9(1):1–10.
  • [19] Buldt AK, Forghany S, Landorf KB, Levinger P, Murley GS, Menz HB. Foot posture is associated with plantar pressure during gait: a comparison of normal, planus and cavus feet. Gait Posture 2018;62(October 2017):235–40.
  • [20] Hofmann UK, Götze M, Wiesenreiter K, Müller O, Wünschel M, Mittag F. Transfer of plantar pressure from the medial to the central forefoot in patients with hallux valgus. BMC Musculoskelet Disord 2019;20(1):1–8.
  • [21] Unver B, Erdem EU, Akbas E. Effects of short-foot exercises on foot posture, pain, disability, and plantar pressure in pes planus. J Sport Rehabil 2019;1:1–5.
  • [22] Martínez-Martí Fernando, Ocón-Hernández Olga, Martínez- García María Sofía, Torres-Ruiz Francisco, Martínez-Olmos Antonio, Carvajal Miguel A, et al. Plantar pressure changes and their relationships with low back pain during pregnancy using instrumented insoles. J Sensors 2019;2019 (Feb.):1–10.
  • [23] Buldt AK, Allan JJ, Landorf KB, Menz HB. The relationship between foot posture and plantar pressure during walking in adults: a systematic review. Gait Posture 2018;62 (January):56–67.
  • [24] Williams WM. The accuracy and reliability of plantar pressure measurements for the early diagnosis of foot deformities in patients suffering from rheumatoid arthritis. Divers Equal Heal Care 2017;14(4):193–202.
  • [25] Hatwagner MF, Koczy LT. Parameterization and concept optimization of FCM models. IEEE Int Conf Fuzzy Syst 2015;2015(Novem).
  • [26] Hatwágner MF, Niskanen VA, Kóczy LT. Behavioral analysis of fuzzy cognitive map models by simulation. IFSA-SCIS 2017 - Jt.17th World Congr. Int. Fuzzy Syst. Assoc. 9th Int. Conf. Soft Comput. Intell. Syst.; 2017.
  • [27] Hatwágner MF, Vastag G, Niskanen VA, Kóczy LT. Banking applications of FCM models. Springer-Verlag; 2011. p. 1–9.
  • [28] Stach W, Kurgan L, Pedrycz W, Reformat M. Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst 2005;153 (3):371–401.
  • [29] Huerga AV. A balanced differential learning algorithm in fuzzy cognitive maps. Proc 16th Int Work Qual Reason 2002;1–7.
  • [30] Papageorgiou EI. Learning algorithms for fuzzy cognitive maps–a review study. IEEE Trans Syst Man Cybern C Appl Rev 2012;42(2):150–63.
  • [31] Felix G, Nápoles G, Falcon R, Froelich W, Vanhoof K, Bello R. A review on methods and software for fuzzy cognitive maps. Artif Intell Rev 2017;1–31.
  • [32] Papageorgiou EI, Salmeron JL. Fuzzy cognitive maps for applied sciences and engineering, vol. 54. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014.
  • [33] Papageorgiou EI, Stylios CD, Groumpos PP. Active Hebbian learning algorithm to train fuzzy cognitive maps. Int J Approx Reason 2004;37(3):219–49.
  • [34] Stylios CD, Georgopoulos VC. Genetic algorithm enhanced fuzzy cognitive maps for medical diagnosis. 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence). 2008. pp. 2123–8.
  • [35] Holland JH. Adaptation in natural and artificial systems. University of Michigan Press; 1975.
  • [36] Cordón O, Herrera F, Hoffmann F, Magdalena L. Genetic fuzzy systems, vol. 19. World Scientific; 2001.
  • [37] Pelta DA, Cruz C. Soft computing based optimization and decision models. Springer I. Cham, Switzerland: Springer; 2018.
  • [38] Gardner MW, Dorling SR. Artificial neural networks ( the multilayer perceptron )— a review of applications in the atmospheric sciences 1998;32(14):2627–36.
  • [39] Hu X, Weng Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ 2009;113(10):2089–102.
  • [40] Zhang Z. Neural networks: further insights into error function, generalized weights and others. Ann Transl Med 2016;4(16). 300–300.
  • [41] Bounds Lloyd, Mathew, Waddell. A multilayer perceptron network for the diagnosis of low back pain. IEEE International Conference on Neural Networks, 2. 1988. p. 481–9.
  • [42] Rana A, Singh Rawat A, Bijalwan A, Bahuguna H. Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). 2018. pp. 1–6.
  • [43] Hasan TT, Jasim MH, Hashim IA. Heart disease diagnosis system based on multi-layer perceptron neural network and support vector machine. Int J Curr Eng Technol 2017;77 (55):2277–4106.
  • [44] Xu S, Zhou X, Sun Y-N. A novel gait analysis system based on adaptive neuro-fuzzy inference system. Expert Syst Appl 2010;37(2):1265–9.
  • [45] Acharya U. Rajendra, Tan Peck Ha, Subramaniam Tavintharan, Tamura Toshiyo, Chua Kuang Chua, Goh Seach Chyr Ernest, et al. Automated identification of diabetic type 2 subjects with and without neuropathy using wavelet transform on pedobarograph. J Med Syst 2008;32 (1):21–9.
  • [46] Piedica, Baropodometría — Plantillas ortopédicas. [Online]. Available: https://www.piedica.com/baropodometria/. [Accessed: 10-May-2018].
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9deee1f3-fb23-414d-80fd-8494887b7ac3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.