PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-term wind power combined prediction based on EWT-SMMKL methods

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since wind power generation has strong randomness and is difficult to predict, a class of combined prediction methods based on empirical wavelet transform (EWT) and soft margin multiple kernel learning (SMMKL) is proposed in this paper. As a new approach to build adaptive wavelets, the main idea is to extract the different modes of signals by designing an appropriate wavelet filter bank. The SMMKL method effectively avoids the disadvantage of the hard margin MKL method of selecting only a few base kernels and discarding other useful basis kernels when solving for the objective function. Firstly, the EWT method is used to decompose the time series data. Secondly, different SMMKL forecasting models are constructed for the sub-sequences formed by each mode component signal. The training processes of the forecasting model are respectively implemented by two different methods, i.e., the hinge loss soft margin MKL and the square hinge loss soft margin MKL. Simultaneously, the ultimate forecasting results can be obtained by the superposition of the corresponding forecasting model. In order to verify the effectiveness of the proposed method, it was applied to an actual wind speed data set from National Renewable Energy Laboratory (NREL) for short-term wind power single-step or multi-step time series indirectly forecasting. Compared with a radial basic function (RBF) kernel- based support vector machine (SVM), using SimpleMKL under the same condition, the experimental results show that the proposed EWT-SMMKL methods based on two different algorithms have higher forecasting accuracy, and the combined models show effectiveness.
Rocznik
Strony
801--817
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
autor
  • Lanzhou Jiaotong University Lanzhou, Gansu 730070, China
autor
  • Lanzhou Jiaotong University Lanzhou, Gansu 730070, China
Bibliografia
  • [1] Wang Q., Martinez-Anido C.B., Wu H.Y., Florita A.R., Hodge B.M., Quantifying the economic and grid reliability impacts of improved wind power prediction, IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1525–1537 (2016), DOI: 10.1109/TSTE.2016.2560628.
  • [2] Liu H.Q., Li W.J., Li Y.C., Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020), DOI: 10.24425/aee.2020.133025.
  • [3] Waśkowicz B., Statistical analysis and dimensioning of a wind farm energy storage system, Archives of Electrical Engineering, vol. 66, no. 2, pp. 265–277 (2017), DOI: 10.1515/aee-2017-0020.
  • [4] Cassola F., Burlando M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output, Applied Energy, vol. 99, no. 6, pp. 154–166 (2012), DOI: 10.1016/j.apenergy.2012.03.054.
  • [5] Li J., Li M., Prediction of ultra-short-term wind power based on BBO-KELM method, Journal of Renewable and Sustainable Energy, vol. 11, no. 5, 056104 (2019), DOI: 10.1063/1.5113555.
  • [6] Zhang Y.G., Wang P.H., Zhang C.H., Lei S., Wind energy prediction with LS-SVM based on Lorenz perturbation, The Journal of Engineering, vol. 2017, no. 13, pp.1724–1727 (2017), DOI: 10.1049/joe.2017.0626.
  • [7] Duan J., Wang P., Ma W., Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network, Energy, vol. 214, 118980 (2021), DOI: 10.1016/j.energy.2020.118980.
  • [8] Moreno S.R., Silva R.G. D., Mariani V.C., Multi-step wind speed forecasting based on hybrid multistage decomposition model and long short-term memory neural network, Energy Conversion and Management, vol. 213, 112869 (2020), DOI: 10.1016/j.enconman.2020.112869.
  • [9] Ramon G.D., Matheus H.D.M.R., Sinvaldo R.M., A novel decomposition-ensemble learning frame-work for multi-step ahead wind energy forecasting, Energy, vol. 216, 119174 (2021), DOI: 10.1016/j.energy.2020.119174.
  • [10] Yldz C., Akgz H., Korkmaz D., An improved residual-based convolutional neural network for very short-term wind power forecasting, Energy Conversion and Management, vol. 228, no. 1, 113731 (2021), DOI: 10.1016/j.enconman.2020.113731.
  • [11] Ribeiro G.T., Mariani V.C., Coelho L.D.S., Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting, Engineering Applications of Artificial Intelligence, vol. 28, no. June, pp. 272–281 (2019), DOI: 10.1016/j.engappai.2019.03.012.
  • [12] Liu X., Zhou J., Qian H.M., Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function, Electric Power Systems Research, vol. 192, 107011 (2021), DOI: 10.1016/j.epsr.2020.107011.
  • [13] Zhu R., Liao W., Wang Y., Short-term prediction for wind power based on temporal convolutional network, Energy Reports, vol. 6, pp. 424–429 (2019), DOI: 10.1016/j.egyr.2020.11.219.
  • [14] Gilles J., Empirical wavelet transform, IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3999–4010 (2013), DOI: 10.1109/TSP.2013.2265222.
  • [15] Wang S.X., Zhang N., Wu L., Wang Y.M., Wind speed prediction based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method, Renewable Energy, vol. 94, pp. 629–636 (2016), DOI: 10.1016/j.renene.2016.03.103.
  • [16] Lanckriet G.R.G., Cristianini N., Bartlett P.L., Ghaoui L.E., Jordan M.I., Learning the kernel matrix with semi-definite programming, Journal of Machine learning research, vol. 5, pp. 323–330 (2002).
  • [17] Gönen M., Alpaydin E., Multiple kernel learning algorithms, Journal of Machine Learning Research, vol. 12, pp. 2211–2268 (2011).
  • [18] Wu D., Wang B.Y., Precup D., Boulet B., Multiple kernel learning based transfer regression for electric load forecasting, IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1183–1192 (2020), DOI: 10.1109/TSG.2019.2933413.
  • [19] Rakotomamonjy A., Bach F.R., Canu S., Grandvalet Y., Simplemkl, Journal of Machine Learning Research, vol. 9, no. 3, pp. 2491–2521 (2008), DOI: 10.1007/s10846-008-9235-4.
  • [20] Xu X.X., Tsang I.W., Xu D., Soft margin multiple kernel learning, IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 5, pp. 749–761 (2013), DOI: 10.1109/TNNLS.2012.2237183.
  • [21] Dong Y., Zhang T., Xi L., Blind steganalysis method for JPEG steganography combined with the semisupervised learning and soft margin support vector machine, Journal of Electronic Imaging, vol. 24, no. 5, pp. 013008.1-013008.8 (2015), DOI: 10.1117/1.JEI.24.1.013008.
  • [22] Chapelle O., Vapnik V., Bousquet O., Choosing multiple parameters for support vector machines, Machine Learning, vol. 46, no. 1–3, pp. 131–159 (2002), DOI: 10.1023/A:1012450327387.
  • [23] Kloft M., Brefeld U., Sonnenburg S., Lp-norm multiple kernel learning, Journal of Machine Learning Research, vol. 12, pp. 953–997 (2011), DOI: 10.14279/depositonce-2978.
  • [24] Chang C.C., Lin C.J., LIBSVM: A library for support vector machines, Acm Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27 (2011), DOI: 10.1145/1961189.1961199.
  • [25] Zeng J., Qiao W., Short-term wind power prediction using a wavelet support vector machine, IEEE Transactions on Sustainable Energy, vol. 3, no. 2, pp. 255–264 (2012), DOI: 10.1109/TSTE.2011.2180029.
  • [26] Potter C.W., Lew D., McCaa J., Creating the dataset for the western wind and solar integration study (USA), Wind Engineering, vol. 32, no. 4, pp. 325–338 (2008), DOI: 10.1260/0309-524X.32.4.325.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9de42920-770d-483e-a5ec-cc028b1e8b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.