Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A steam generator in a nuclear power plant with a light water reactor is a heat exchanger, in which the heat is being transferred from the primary to the secondary loop (it links the primary and secondary loops). When the power plant is running, the inlet parameters (temperatures and mass flow rates) on both sides of the steam generator can change. It is important to know how the changes of these parameters affect the steam generator performance. The complexity of the processes taking place in the steam generator makes it difficult to create a simulator reflecting its performance under changed conditions. In order to simplify the task, the steam generator was considered as a ‘black box’ with the aim of examining how the changes of the inlet parameters affect the changes of the outlet ones. On the basis of the system (steam generator) response, a simple mathematical model of the steam generator under variable load conditions was proposed. In the proposed model, there are two dimensionless parameters and three constant coefficients. A linear relation between these dimensionless parameters was obtained. The correctness of the model was verified against the data obtained with a steam generator simulator for European Pressured Reactor and AP-600 reactors. A good agreement between the proposed model and the simulator data was achieved.
Czasopismo
Rocznik
Tom
Strony
75--88
Opis fizyczny
Bibliogr. 16 poz., il
Twórcy
autor
- Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
autor
- Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
Bibliografia
- [1] Todreas N.E., Kazimi M.S.: Nuclear Systems I, Thermal Hydraulic Fundamentals. Hemisphere Publishing Corporation, 1990.
- [2] Pressurized Water Reactor (PWR), Reactor Concepts Manual, USNRC Technical Training Center.
- [3] http://www.areva.com
- [4] Kurdian R.M., Beynon T.D.: Analysis of the steam generator for the safe integral reactor concept: I. steady state. Prog. Nucl. Energ. 31(1997), 273-287.
- [5] Zhao F., Ou J., Du W.: Simulation modeling of nuclear steam generator water level process - a case study. ISA Trans. 39(2000), 143-151.
- [6] Masini R., Padovani E., Ricotti M., Zio E.: Dynamic simulation of a steam generator by neural networks. Nucl. Eng. Des. 187(1999), 197-213.
- [7] Eliasi H., Davilu H., Menhaj M.: Adaptive fuzzy model based predictive control of nuclear steam generators. Nucl. Eng. Des. 237(2007), 668-676.
- [8] Marseguerra M., Zio E., Avogadri P.: Model identification by neuro-fuzzy techniques: predicting the water level in a steam generator of a PWR. Prog. Nucl. Energ. 44(2004), 237-252.
- [9] www.areva-np.com/BROCHURE-EPR-US-2.pdf
- [10] Lam W.K.: Advanced Pressurized Water Reactor Simulator. User Manual, Cassiopeia Technologies Inc. Canada, 2009.
- [11] www.iaea.org
- [12] Adomaitisa D., Saiub G., Oyarzabalc M.: European passive plant program: A design for the 21st century. Nucl. Eng. Des. 179(1998), 17-29.
- [13] Rusinowski H., Szapajko G.: Energy evaluation of steam-water cycle operation with mathematical modelling application. Arch. Thermodyn. 32(2011), 4, 101-117.
- [14] Szapajko G., Rusinowski H.: Mathematical modelling of steam-water cycle with auxiliary empirical functions application. Arch. Thermodyn. 31(2010), 3, 165-183.
- [15] Szapajko G., Rusinowski H.: Empirical modelling of heat exchangers in a CHP plant with bleed-condensing turbine. Arch. Thermodyn. 29(2008), 4, 177-184.
- [16] Laskowski R.M.: A mathematical model of the steam condenser in the changed conditions. J. Power Technol. 92(2012), 2, 101-108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9de1f3c4-53e9-4fe4-963a-6d8c38b994f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.