PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined thermal, microstructural and microchemical analysis of solidification of Al25Si3Cu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper present thermal and microstructural and microchemical analyses were conducted on the unmodified experimental alloy Al20Si3Cu (B390.1) solidified in the High Temperature Universal Metallurgical Simulator and Analyser (HT UMSA) under atmospheric pressure (0.1 MPa) and a relatively low solidification rate (-1.2 K/s just after end of solidification), for identification of the thermal events during solidification and the phases in the as-cast structure. Design/methodology/approach: The HT UMSA platform, using a low thermal mass stainless steel cup, enabled the acquisition of high resolution thermal analysis data. Design/methodology/approach: A new approach for de-convolution of the first derivative thermal curves allowed detailed thermal and microstructural phase histories to be documented for solidification of Al-Si alloys. Recently developed SEM/EDS methodology allowed to determine composition and distribution of individual phases that are smaller than the X–ray volume. Findings: Simultaneous consideration of thermal microstructural and microchemical information allowed detailed understanding of the series of events that take place during solidification of Al casting alloy with complex chemistry. In our hypereutectic alloy we document growth of Al(1) dendrites and formation of secondary Si(2) and Al(2) phases all at temperatures higher than the binary equilibrium Al-Si eutectic temperature of 850 K. Practical implications: Even at this slow solidification rate detailed understanding of the solidification microstructure requires consideration of non-equilibrium processes during solidification. Originality/value: We propose an original set of hypotheses that consistently explain the observed non-equilibrium solidification behaviour. Proof of these hypotheses is beyond the scope of this work.
Rocznik
Strony
49--79
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Mechanical, Automotive & Materials Engineering, University of Windsor, # 2175 CEI, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
autor
  • Gesing Consultants Inc., 36 Danville Dr., M2P 1J1, Toronto, Ontario, Canada
  • Department of Mechanical, Automotive & Materials Engineering, University of Windsor, # 2175 CEI, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
autor
  • Department of Mechanical, Automotive & Materials Engineering, University of Windsor, # 2175 CEI, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
autor
  • Department of Mechanical, Automotive & Materials Engineering, University of Windsor, # 2175 CEI, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
autor
  • Department of Power Electronics, Electrical Drives and Robotics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Kasprzak, H. Kurita, J.H. Sokolowski, H. Yamagata, Energy-Efficient Tempers for Aluminum Motorcycle Cylinder Blocks, Advanced Materials and Processes March (2010) 24-27.
  • [2] T. Meara, New Honing Options For Hypereutectic Aluminum Cylinder Bores, 2013, Available Online: http://www.mmsonline.com/articles/new-honingoptions-for-hypereutectic-aluminum- cylinder-bores.
  • [3] W. Kasprzak, M. Sahoo, J.H. Sokolowski, H. Yamagata, H. Kurita, The Effect of the Melt Temperature and the Cooling Rate on the Microstructure of the Al-20%Si Alloy used for Monolithic Engine Blocks, International Journal of Metalcasting 3/3 (2009) 55-71, doi: https://doi.org/10.1007/BF03355453.
  • [4] H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks, Journal of Materials Processing Technology 203/1-3 (2008) 333-341, doi: https://doi.org/10.1016/j.jmatprotec.2007.10.023.
  • [5] W. Kasprzak, J.H. Sokolowski, H. Yamagata, M. Aniolek, H. Kurita, Energy Efficient Heat Treatment for Linerless Hypereutectic Al-Si Engine Blocks Made Using Vacuum HPDC Process, Journal of Materials Engineering and Performance 20/1 (2010) 120-132, doi: https://doi.org/10.1007/s11665-010-9658-5.
  • [6] M. Aniolek, W. Kasprzak, J.H. Sokolowski, Heat Treatment Project Conducted for the Yamaha Motor Co. Ltd., Windsor, 2004.
  • [7] H. Yamagata, H. Kurita, The Controlling Factors of the Size and Distribution of Si Particles in the Hypereutectic Al-20%Si Linerless Die-Cast Cylinder Block, JD (2008) 221-228.
  • [8] H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, Thermal and metallographic characteristics of the Al–20% Si high-pressure die-casting alloy for monolithic cylinder blocks, Journal of Materials Processing Technology 199/1-3 (2008) 84-90, doi: https://doi.org/10.1016/j.jmatprotec.2007.08.007.
  • [9] W. Kasprzak, J. H. Sokolowski, H. Yamagata, H. Kurita, Development of Energy Efficient Heat Treatment Processes for Light Weight Automotive Castings, in: Heat Treating: Proceedings of the 25th ASM, 2009.
  • [10] L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, American Foundry Society, 1990.
  • [11] A.J. Gesing, P.C. Marchwica, S. Lackie, J.H. Sokolowski, Quantitative X-Ray Fluorescence Determination of Elemental Composition of Micro- Constituents Smaller than the Electron Probe Volume, in: The Minerals, Metals & Materials Society, Vol. 1, 2013.
  • [12] P.C. Marchwica, J.H. Sokolowski, W.T. Kierkus, Fraction Solid Evolution Charcteristics of AlSiCu Alloys – Dynamic Baseline Approach, Journal of Achievements in Materials and Manufacturing Engineering 47/2 (2011) 115-136.
  • [13] E. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Intermetallic phases in Al–Si based cast alloys: new perspective, International Journal of Cast Metals Research 27/2 (2014) 107-114, doi: 10.1179/1743133613Y.0000000083.
  • [14] J.A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Materials Science 1 (2012) 19-33, doi: 10.1016/j.mspro.2012.06.004.
  • [15] V. Vijeesh, K. Narayan Prabhu, Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties, Transictions of the Indian Institute of Metals 67/1 (2014) 1-18, doi: 10.1007/s12666-013-0327-x.
  • [16] H.S. Kang, W.Y. Yoon, et.al., Microstructure selections in the undercooled hypereutectic Al-Si Alloys, Materials Science and Engineering A 404 (2005) 117-123, doi:10.1016/j.msea.205.05.041.
  • [17] W. Kasprzak, D. Sediako, M. Walker, M. Sahoo, I. Swainson, Solidification Analysis of an Al-19 Pct Si Alloy Using In-Situ Neutron Diffraction, Metallurgical and Materials Transactions A 42 (2011) 1854-1862, doi: 10.1007/s11661-011-0666-3.
  • [18] W.M. Wang, X.F. Bian, H.R. Wang, Z. Wang, L. Zhang, Z.G. Liu, J-M Liu, Origin of the anomalous volume expansion in Al-Si alloys above liquidus, Journal of Materials Research 16/12 (2001) 3592-3598, doi: https://doi.org/10.1557/JMR.2001.0492.
  • [19] Aluminum, the rochemical data, Available Online: http://webbook.nist.gov/cgi/cbook.cgi?ID=7429-90-5.
  • [20] R.S. Wagner, On the growth of germanium dendrites, Acta Metallurgica 8 (1960) 57-60.
  • [21] D.R. Hamilton, R.G. Seidensticker, Propagation mechanism of germanium dendrites, Journal of Applied Physics 31 (1960) 1165-1168.
  • [22] A.J. Shahani, E.B. Gulsoy, S.O. Poulsen, X. Xiao, P.W. Voorhees, Twin-mediated crystal growth: an enigma resolved, Scientific Reports 6 (2016) 28651, doi: 10.1038/srep28651.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9de19449-50ae-4f65-809e-bf71f6074e97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.