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Abstrat. It is well known that Feistel Network (FN) is the foundation of many

symmetri iphers used in pratie. In this paper we present some remarks and ex-

perimental results on SAT based ryptanalysis of several modi�ed versions of FN.

We investigate di�erent ryptographi funtions used in FN shema for better un-

derstanding their properties from a seurity point of view. In our work we study the

notions widely used in many iphers: the xor funtion, bits rotations, permutations

and S−boxes.

1. Introdution

Boolean SATis�ability problem is the well known and elebrated NP-omplete

problem [2℄. The Boolean enoding of some system models and heking sat-

is�ability of obtained formulas sometimes gives the answer to the question

about important system's properties [1, 8℄. So far, there is no known algo-

rithm that solves e�iently all the instanes of SAT. It is generally believed

that no suh e�etive algorithm an already exist. On the other hand, in many

instanes a lot of Boolean formulas an be solved surprisingly e�iently, even

very large formulas appearing naturally in desription of various industrial

systems as well as in deision and optimization problems [1, 2, 7℄. There are

many ompeting algorithms searhing for a satisfying valuation for a given

Boolean formula. A lot of them are highly optimised versions of the DPLL

proedure of [4℄ and [5℄. Usually SAT-solvers take input formulas in the on-

juntive normal form (CNF). It is a onjuntion of lauses, where a lause is

a disjuntion of literals, and a literal is a propositional variable or the om-

plement of a propositional variable.
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In this paper we use SAT for investigation of seurity properties of sev-

eral modi�ed versions of FN, that is some easy but very important ipher

used as a basis for many strong symmetri iphers applied in pratie (see, for

example, [9℄). We show how using several di�erent ryptographi funtions

as a main funtion F in FN an hange seurity properties and omputa-

tional omplexity of FN's SAT based ryptanalysis. We show this on the well

known funtions used in many other symmetri iphers: the xor funtion, bits

rotation, permutation and S−box. Carrying out urrent researh we want to

hek how SAT ryptanalysis works in the simple ases disussed in order to

have the ability to selet some other iphers used in pratie for future study.

Their ryptanalysis may be promising.

The methodology is similar to that used in [3℄ and [8℄, and this paper

presents an investigation additional to our previous paper [6℄.

The rest of this paper is organized as follows. In the seond setion, we

introdue all the basi information on the FN ipher to the extent neessary for

explaining our Boolean enoding method. The third setion gives a proess of

a diret Boolean enoding of FN and the main funtions whih are onsidered.

In the fourth setion, we present some experimental results whih have been

obtained. Some onlusions and remarks onerning the future work are given

in the last setion.

2. Feistel Network

This setion presents the basi information on FN whih is needed for un-

derstanding the Boolean enoding of investigated iphers. It is well known

that FN is a symmetri-key blok algorithm widely used as a design priniple

of many symmetri iphers, inluding the famous Data Enryption Standard

(DES). FN has the advantage that its enryption and deryption proedures

are almost idential, requiring only a reversal of the key shedule. FN is an

iterated algorithm whih is exeuted many times on the same input. Due to

a simple struture and easy hardware implementation, Feistel-like networks are

widely used as a omponent of various ipher designs. Some famous, strong

and used in pratie FN are the following: MISTY1, Skipjak, Blow�sh, RC5,

Two�sh (see, for example, [9℄).

Consider a given bit blok M that represents a plaintext. Let F denote the

round main funtion of FN and K1, . . . ,Kn denote a sequene of keys obtained

in some way from the main key K for the rounds 1, . . . , n, respetively. We

use the symbol ⊗ for denoting the exlusive-OR (xor) operation.

The basi operations of FN are spei�ed as follows:
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1. break the plaintext blok M into two equal length parts denoted by

(L0, R0);

2. for eah round i = 0, 1, . . . , n ompute:

a) Li+1 = Ri,

b) Ri+1 = Li ⊗ F (Ri,Ki).

Then the iphertext sequene is (Rn+1, Ln+1).

The struture of FN allows for an easy method of deryption. For expla-

nation of the deryption proedure of FN, let us reall the basi properties of

operation ⊗:

1. x ⊗ x = 0,

2. x ⊗ 0 = x,

3. x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z.

A given iphertext (Rn+1, Ln+1) is derypted by omputing

Ri = Li+1, Li = Ri+1 ⊗ F (Li+1,Ki)

for i = n, n − 1, . . . , 0.

It is easy to see that (L0, R0) is the plaintext again. Observe that we have

the following equations:

Ri+1 ⊗ F (Li+1,Ki) = (Li ⊗ F (Ri,Ki)) ⊗ F (Li,Ki)

= Li ⊗ (F (Ri,Ki) ⊗ F (Li,Ki)) = Li ⊗ 0 = Li.

It should be noted that the power of the ipher depends on the hoie of the

funtion F . In pratie, many di�erent solutions are used in this ase. In

the next setions we investigate four of them: the xor funtion, bits rotation,

permutation, and S−box.

3. Boolean enoding for ryptanalysis

This setion presents a diret Boolean enoding of FN versions with di�erent

funtions F . As it was mentioned above, FN onstitutes the basi struture

for many well respeted symmetri iphers. Hene, its Boolean enoding will

be helpful in the SAT-based ryptanalysis whih we want to pursue in the

future.

For our explanation we onsider FN with a 64-bit blok of a plaintext and

a 32-bit key. Let p1, . . . , p64, k1, . . . , k32 and c1, . . . , c64 be the propositional
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variables representing a plaintext, a key, and a iphertext, respetively. Ob-

serve that following the Feistel algorithm for the �rst, left half of a plaintext

we have:
32∧

i=1

(ci ⇔ pi+32).

It is easy to see that for the seond, right half of a plaintext we have:

32∧

i=1

(ci ⇔ (pi ⊗ F (ki, pi+32)).

Hene the enoding formula for one round of FN is as follows:

Φ1
Feistel :

32∧

i=1

(ci ⇔ pi+32) ∧

32∧

i=1

(ci ⇔ (pi ⊗ F (ki, pi+32)).

In the ase of t rounds of FN we have the following: Let (p1
1, . . . , p1

64),
(k1, . . . , k32) be a plaintext and a key vetors of variables, respetively. By

(pj
1, . . . , p

j
64) and (ci

1, . . . , ci
64) we desribe the vetors of variables represent-

ing input of the jth round for j = 2, . . . , t and output of the ith round for

i = 1, . . . , t − 1. We denote by (ct
1, . . . , ct

64) the variables of a ipher vetor

after the tth round.

The formula whih enodes the whole tth round of a Feistel Network is as

follows:

Φt
F eistel :

32∧

i=1

t∧

s=1

(cs
i ⇔ ps

i+32) ∧

32∧

i=1

t∧

s=1

[cs
i+32 ⇔ (ps

i ⊗ F (ki, p
s
i+32))] ∧

∧

64∧

i=1

t−1∧

s=1

(ps+1
i ⇔ cs

i ).

Observe that the last part of Φt
F eistel states that the outputs from the sth

round are the inputs of the (s + 1)th round.

As we an see, the obtained formula is a onjuntion of ordinary, or rather

simple, equivalenes. This is important from the viewpoint of translating into

CNF. The seond advantage of this desription is that we an automatially

generate the formula for many investigated rounds.

It is well known that the seurity of FN ipher depends on the funtion

F . In our investigation, as a simple instantiation of the funtion F , we �rstly

use the funtion xor, denoted as before without any other hanges of the used
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bits. In this ase we obtain the following formula that enodes the funtion F

in the onsidered ipher:

F (ki, p
s
i+32) ⇔ (ki ⊗ ps

i+32).

The seond onsidered approah is adding the rotation of key's bits into

F . If we use one right rotation for one round of FN, we arrive at the following

formula:

F (ki, p
s
i+32) ⇔ (ki⊕s ⊗ ps

i+32),

where ⊕ denotes + modulo 32.
The third example presents some permutation in the funtion F . In this

work we onsider the PC permutation � one of permutations used in the DES

ipher [9℄. In this ase we get the following formula:

F (ki, p
s
i+32) ⇔ (ki ⊗ ps

PC(i)⊕32).

The last, most powerfull, onsidered modi�ation of the funtion F is

adding the S−box into F . Like before, we use the �rst S−box used in DES

ipher [9℄. Firstly, we inrease the length of the blok half from 32 to 48 by

repeating the proper bits like in the DES algorithm. Observe that eah of

S−boxes of this type is the matrix with four rows and sixteen olumns, where

in eah row we have one di�erent permutation of numbers belonging to Z16.

These numbers are denoted in binary form as four-tuples of bits. Following

this, we an onsider eah S−box as a funtion of the type Sbox : {0, 1}6 →
{0, 1}4.

For simpliity, let us denote by x the vetor (x1, . . . , x6) and by Sk
box(x)

the kth oordinate of the value Sbox(x) for k = 1, 2, 3, 4.
We an enode the S−box as the following Boolean formula:

ΦSbox
:

∧

x∈{0,1}6

(

6∧

i=1

(¬)1−xiri ⇒

4∧

j=1

(¬)1−S
j

box
(x)qj),

where (r1, . . . , r6) is the input vetor of the S−box and (q1, . . . , q4) is the

output one. Additionally, by (¬)0r and (¬)1r we mean r and ¬r, respetively.

Using this, we an enode the S−box used as 256 simple impliation. This

number is equal to the size of the S−box matrix. Due to the strongly irregular

and random harater of S−boxes, we are sure that this is the simplest method

of their Boolean enoding. Having them, we an enode any given number

of rounds of modi�ed FN as a Boolean propositional formula. The next step

of our investigation is applying our ryptanalysis proedure to the obtained

formulas.



108 Paweª Dudek, Mirosªaw Kurkowski

Enoding Enoding Solving Solving

Rounds Variables Clauses Time Memory Time Memory

(s.) (MB) (s.) (MB)

4 672 9952 0.008 8 0.012 8

8 1248 19808 0.016 8 0.181 9

12 1824 29664 0.021 9 90.74 25

16 2400 39520 0.028 9 11370.5 231

Table 1: Experimental results with S−box.

4. Cryptanalysis proedure and experimental results

The ryptanalysis proedure used in our investigation proeeds as follows:

1) enode a single round of the ipher onsidered as a Boolean propositional

formula;

2) generate automatially the formula enoding an iterated desired number

of rounds;

3) onvert the obtained formula into the CNF form;

4) (randomly) hoose a plaintext and the key vetor as the 0, 1 valuation

of the variables representing them in the formula;

5) insert the hosen valuation into the formula;

6) alulate the orresponding iphertext using an appropriate key and

insert it into the formula;

7) run some SAT-solver to �nd a satisfying valuation, inluding a valuation

of the key variables.

To test how the SAT based ryptanalysis works for the funtions men-

tioned above we have used the previously outlined proedure for four di�erent

number of rounds of a modi�ed version of the FN: 4, 8, 12, and 16. The

obtained results show that the SAT based ryptanalysis is similar to other

methods of ryptanalysis. The SAT based ryptanalysis proeeds along very

well with simple funtions suh as xor, rotations, and permutations. The re-

sults obtained for these features show a stritly linear relationship to reeive

the key from the known plaintext iphertext pair with inreasing the number

of iterations of the algorithm.

In the ase of adding the S−box into the funtion F we obtain results

that show an exponential relation to reeiving the key with inreasing the

number of iterations of the algorithm. We an see these results in Table 1.
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In this Table we show the number of variables and lauses of the enoding

formula obtained for proper iterations of FN, time of generating the formula

and time of searhing key satis�able valuation (break the key).

The omputer used to perform the experiments was equipped with the

proessor Intel Pentium D (3000 MHz), 2 GB main memory, the operating

system Linux, and the SAT-solver MiniSat.

5. Conlusion and the future work

In this paper we have shown how the SAT based ryptanalysis works for break-

ing some modi�ed versions of Feistel Network. We have investigated four dif-

ferent main funtions of FN using the xor funtion, bits rotation, permutation,

and S−box. The obtained results show that this type of ryptanalysis proeeds

well with the iphers with the xor funtion, bits rotation, and permutation.

Using the S−box in ipher algorithm inreases omputational omplexity of

this type ryptanalysis into an exponential one. The next step of our work will

onsist in hoosing some of the iphers used in pratie that have funtions

simply from the SAT based ryptanalysis and trying to break them. We hope

that this investigation will be helpfull in hoosing suh iphers. We are sure

that the Kazumi ipher will be a good example for our work. Clearly, the

suess of our method depends on �nding a ipher whih an be broken.
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