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Abstract. Tt is well known that Feistel Network (FN) is the foundation of many
symmetric ciphers used in practice. In this paper we present some remarks and ex-
perimental results on SAT based cryptanalysis of several modified versions of FN.
We investigate different cryptographic functions used in FN schema for better un-
derstanding their properties from a security point of view. In our work we study the
notions widely used in many ciphers: the zor function, bits rotations, permutations
and S—boxes.

1. Introduction

Boolean SATisfiability problem is the well known and celebrated NP-complete
problem [2]. The Boolean encoding of some system models and checking sat-
isfiability of obtained formulas sometimes gives the answer to the question
about important system’s properties [1, 8]. So far, there is no known algo-
rithm that solves efficiently all the instances of SAT. It is generally believed
that no such effective algorithm can already exist. On the other hand, in many
instances a lot of Boolean formulas can be solved surprisingly efficiently, even
very large formulas appearing naturally in description of various industrial
systems as well as in decision and optimization problems [1, 2, 7]. There are
many competing algorithms searching for a satisfying valuation for a given
Boolean formula. A lot of them are highly optimised versions of the DPLL
procedure of [4] and [5]. Usually SAT-solvers take input formulas in the con-
junctive normal form (CNF). It is a conjunction of clauses, where a clause is
a disjunction of literals, and a literal is a propositional variable or the com-
plement of a propositional variable.
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In this paper we use SAT for investigation of security properties of sev-
eral modified versions of FN, that is some easy but very important cipher
used as a basis for many strong symmetric ciphers applied in practice (see, for
example, [9]). We show how using several different cryptographic functions
as a main function F' in FN can change security properties and computa-
tional complexity of FN’s SAT based cryptanalysis. We show this on the well
known functions used in many other symmetric ciphers: the zor function, bits
rotation, permutation and S—box. Carrying out current research we want to
check how SAT cryptanalysis works in the simple cases discussed in order to
have the ability to select some other ciphers used in practice for future study.
Their cryptanalysis may be promising.

The methodology is similar to that used in [3] and [8], and this paper
presents an investigation additional to our previous paper [6].

The rest of this paper is organized as follows. In the second section, we
introduce all the basic information on the FN cipher to the extent necessary for
explaining our Boolean encoding method. The third section gives a process of
a direct Boolean encoding of FN and the main functions which are considered.
In the fourth section, we present some experimental results which have been
obtained. Some conclusions and remarks concerning the future work are given
in the last section.

2. Feistel Network

This section presents the basic information on FN which is needed for un-
derstanding the Boolean encoding of investigated ciphers. It is well known
that FN is a symmetric-key block algorithm widely used as a design principle
of many symmetric ciphers, including the famous Data Encryption Standard
(DES). FN has the advantage that its encryption and decryption procedures
are almost identical, requiring only a reversal of the key schedule. FN is an
iterated algorithm which is executed many times on the same input. Due to
a simple structure and easy hardware implementation, Feistel-like networks are
widely used as a component of various cipher designs. Some famous, strong
and used in practice FN are the following: MISTY1, Skipjack, Blowfish, RC5,
Twofish (see, for example, [9]).

Consider a given bit block M that represents a plaintext. Let F' denote the
round main function of FN and K3, ... , K, denote a sequence of keys obtained
in some way from the main key K for the rounds 1,... ,n, respectively. We
use the symbol ® for denoting the exclusive-OR (zor) operation.

The basic operations of FN are specified as follows:
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1. break the plaintext block M into two equal length parts denoted by

(Lo, Ro);
2. for each round i = 0,1, ...,n compute:
a) Liy1 = R;,

b) Riy1=L;® F(RZ,KZ)
Then the ciphertext sequence is (Rp41, Ln+1)-

The structure of FIN allows for an easy method of decryption. For expla-
nation of the decryption procedure of FN, let us recall the basic properties of
operation ®:

l.x® z =0,
2.z ® 0 = x,
3z ® (Yy®z2) =@y =z
A given ciphertext (Ry41, Lnt1) is decrypted by computing
Ri=1Li1, Li=Ri1®F(Lit1, K;)
fori=n,n—1,...,0.

It is easy to see that (Lo, Rp) is the plaintext again. Observe that we have
the following equations:

Rit1 ® F(Lit1,K;) = (L; ® F(R;, K;)) ® F(L;, K;)

It should be noted that the power of the cipher depends on the choice of the

function F'. In practice, many different solutions are used in this case. In
the next sections we investigate four of them: the xor function, bits rotation,
permutation, and S'—box.

3. Boolean encoding for cryptanalysis

This section presents a direct Boolean encoding of FN versions with different
functions F. As it was mentioned above, FN constitutes the basic structure
for many well respected symmetric ciphers. Hence, its Boolean encoding will
be helpful in the SAT-based cryptanalysis which we want to pursue in the
future.

For our explanation we consider FN with a 64-bit block of a plaintext and
a 32-bit key. Let p1,... ,pe4, k1,-.. , k32 and c1,... ,cgq be the propositional
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variables representing a plaintext, a key, and a ciphertext, respectively. Ob-
serve that following the Feistel algorithm for the first, left half of a plaintext

we have:
32

A\ (i & pitsa).

i=1
It is easy to see that for the second, right half of a plaintext we have:

32

/\(ci < (pi @ F(ki,pivs2))-
=1

Hence the encoding formula for one round of FN is as follows:

32 32
D Freister /\(Ci < Pit32) A /\(Ci & (pi @ F(ki, pits2))-
i=1 i=1

In the case of ¢ rounds of FN we have the following: Let (pl,...,pis),

(k1,... ,k32) be a plaintext and a key vectors of variables, respectively. By
(pl,...,pky) and (¢4, ... ,ck,) we describe the vectors of variables represent-
ing input of the jth round for j = 2,... ,¢ and output of the ith round for
i=1,...,t —1. We denote by (cf,...,ck,) the variables of a cipher vector

after the tth round.

The formula which encodes the whole ¢th round of a Feistel Network is as
follows:

32 ¢ 32t
Dlcistel ° /\ /\(C%9 < Pisa) A /\ /\[Cf+32 & (p; @ F(ki,piise))] A
i=1s=1 i=1s=1
64 t—1
A AGT S ).
i=1s=1

Observe that the last part of ®%. .., states that the outputs from the sth
round are the inputs of the (s + 1)th round.

As we can see, the obtained formula is a conjunction of ordinary, or rather
simple, equivalences. This is important from the viewpoint of translating into
CNF'. The second advantage of this description is that we can automatically
generate the formula for many investigated rounds.

It is well known that the security of FN cipher depends on the function
F. In our investigation, as a simple instantiation of the function F', we firstly
use the function zor, denoted as before without any other changes of the used
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bits. In this case we obtain the following formula that encodes the function F'
in the considered cipher:

F(ki,piisa) & (ki @ piisa)-

The second considered approach is adding the rotation of key’s bits into
F'. If we use one right rotation for one round of FN, we arrive at the following
formula:

F(ki, pii32) & (kios @ Pi132),

where @ denotes + modulo 32.

The third example presents some permutation in the function F. In this
work we consider the PC' permutation — one of permutations used in the DES
cipher [9]. In this case we get the following formula:

F(ki,pii32) < (ki ® Ppogmse)-

The last, most powerfull, considered modification of the function F is
adding the S—box into F. Like before, we use the first S—box used in DES
cipher [9]. Firstly, we increase the length of the block half from 32 to 48 by
repeating the proper bits like in the DES algorithm. Observe that each of
S—bozxes of this type is the matrix with four rows and sixteen columns, where
in each row we have one different permutation of numbers belonging to Zi¢.
These numbers are denoted in binary form as four-tuples of bits. Following
this, we can consider each S—box as a function of the type Sy, : {0,1}% —
{0,1}*.

For simplicity, let us denote by T the vector (x1,...,xz¢) and by S{fox(ﬁ)
the kth coordinate of the value Sy, (%) for k = 1,2, 3,4.

We can encode the S—box as the following Boolean formula:

6 4 ,
Pt N (AC T = N() D),
ze{0,1}6 i=1 j=1
where (r1,...,76) is the input vector of the S—box and (qi,...,q4) is the

output one. Additionally, by (=) and (=)' we mean r and —r, respectively.
Using this, we can encode the S'—box used as 256 simple implication. This
number is equal to the size of the S—box matrix. Due to the strongly irregular
and random character of S—boxes, we are sure that this is the simplest method
of their Boolean encoding. Having them, we can encode any given number
of rounds of modified FN as a Boolean propositional formula. The next step
of our investigation is applying our cryptanalysis procedure to the obtained
formulas.
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Encoding | Encoding | Solving | Solving
Rounds | Variables | Clauses Time Memory Time | Memory
(s.) (MB) (s.) (MB)
4 672 9952 0.008 8 0.012 8
8 1248 19808 0.016 8 0.181 9
12 1824 29664 0.021 9 90.74 25
16 2400 39520 0.028 9 11370.5 231

Table 1: Experimental results with S—box.

4. Cryptanalysis procedure and experimental results

The cryptanalysis procedure used in our investigation proceeds as follows:

1) encode a single round of the cipher considered as a Boolean propositional
formula;

2) generate automatically the formula encoding an iterated desired number
of rounds;

3) convert the obtained formula into the CNF form;

4) (randomly) choose a plaintext and the key vector as the 0,1 valuation
of the variables representing them in the formula;

5) insert the chosen valuation into the formula;

6) calculate the corresponding ciphertext using an appropriate key and
insert it into the formula;

7) run some SAT-solver to find a satisfying valuation, including a valuation
of the key variables.

To test how the SAT based cryptanalysis works for the functions men-
tioned above we have used the previously outlined procedure for four different
number of rounds of a modified version of the FN: 4, 8 12, and 16. The
obtained results show that the SAT based cryptanalysis is similar to other
methods of cryptanalysis. The SAT based cryptanalysis proceeds along very
well with simple functions such as xor, rotations, and permutations. The re-
sults obtained for these features show a strictly linear relationship to receive
the key from the known plaintext ciphertext pair with increasing the number
of iterations of the algorithm.

In the case of adding the S —box into the function F' we obtain results
that show an exponential relation to receiving the key with increasing the
number of iterations of the algorithm. We can see these results in Table 1.
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In this Table we show the number of variables and clauses of the encoding
formula obtained for proper iterations of FN, time of generating the formula
and time of searching key satisfiable valuation (break the key).

The computer used to perform the experiments was equipped with the
processor Intel Pentium D (3000 MHz), 2 GB main memory, the operating
system Linux, and the SAT-solver MiniSat.

5. Conclusion and the future work

In this paper we have shown how the SAT based cryptanalysis works for break-
ing some modified versions of Feistel Network. We have investigated four dif-
ferent main functions of FN using the zor function, bits rotation, permutation,
and S—box. The obtained results show that this type of cryptanalysis proceeds
well with the ciphers with the xor function, bits rotation, and permutation.
Using the S'—box in cipher algorithm increases computational complexity of
this type cryptanalysis into an exponential one. The next step of our work will
consist in choosing some of the ciphers used in practice that have functions
simply from the SAT based cryptanalysis and trying to break them. We hope
that this investigation will be helpfull in choosing such ciphers. We are sure
that the Kazumi cipher will be a good example for our work. Clearly, the
success of our method depends on finding a cipher which can be broken.
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