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Abstra
t. It is well known that Feistel Network (FN) is the foundation of many

symmetri
 
iphers used in pra
ti
e. In this paper we present some remarks and ex-

perimental results on SAT based 
ryptanalysis of several modi�ed versions of FN.

We investigate di�erent 
ryptographi
 fun
tions used in FN s
hema for better un-

derstanding their properties from a se
urity point of view. In our work we study the

notions widely used in many 
iphers: the xor fun
tion, bits rotations, permutations

and S−boxes.

1. Introdu
tion

Boolean SATis�ability problem is the well known and 
elebrated NP-
omplete

problem [2℄. The Boolean en
oding of some system models and 
he
king sat-

is�ability of obtained formulas sometimes gives the answer to the question

about important system's properties [1, 8℄. So far, there is no known algo-

rithm that solves e�
iently all the instan
es of SAT. It is generally believed

that no su
h e�e
tive algorithm 
an already exist. On the other hand, in many

instan
es a lot of Boolean formulas 
an be solved surprisingly e�
iently, even

very large formulas appearing naturally in des
ription of various industrial

systems as well as in de
ision and optimization problems [1, 2, 7℄. There are

many 
ompeting algorithms sear
hing for a satisfying valuation for a given

Boolean formula. A lot of them are highly optimised versions of the DPLL

pro
edure of [4℄ and [5℄. Usually SAT-solvers take input formulas in the 
on-

jun
tive normal form (CNF). It is a 
onjun
tion of 
lauses, where a 
lause is

a disjun
tion of literals, and a literal is a propositional variable or the 
om-

plement of a propositional variable.



104 Paweª Dudek, Mirosªaw Kurkowski

In this paper we use SAT for investigation of se
urity properties of sev-

eral modi�ed versions of FN, that is some easy but very important 
ipher

used as a basis for many strong symmetri
 
iphers applied in pra
ti
e (see, for

example, [9℄). We show how using several di�erent 
ryptographi
 fun
tions

as a main fun
tion F in FN 
an 
hange se
urity properties and 
omputa-

tional 
omplexity of FN's SAT based 
ryptanalysis. We show this on the well

known fun
tions used in many other symmetri
 
iphers: the xor fun
tion, bits

rotation, permutation and S−box. Carrying out 
urrent resear
h we want to


he
k how SAT 
ryptanalysis works in the simple 
ases dis
ussed in order to

have the ability to sele
t some other 
iphers used in pra
ti
e for future study.

Their 
ryptanalysis may be promising.

The methodology is similar to that used in [3℄ and [8℄, and this paper

presents an investigation additional to our previous paper [6℄.

The rest of this paper is organized as follows. In the se
ond se
tion, we

introdu
e all the basi
 information on the FN 
ipher to the extent ne
essary for

explaining our Boolean en
oding method. The third se
tion gives a pro
ess of

a dire
t Boolean en
oding of FN and the main fun
tions whi
h are 
onsidered.

In the fourth se
tion, we present some experimental results whi
h have been

obtained. Some 
on
lusions and remarks 
on
erning the future work are given

in the last se
tion.

2. Feistel Network

This se
tion presents the basi
 information on FN whi
h is needed for un-

derstanding the Boolean en
oding of investigated 
iphers. It is well known

that FN is a symmetri
-key blo
k algorithm widely used as a design prin
iple

of many symmetri
 
iphers, in
luding the famous Data En
ryption Standard

(DES). FN has the advantage that its en
ryption and de
ryption pro
edures

are almost identi
al, requiring only a reversal of the key s
hedule. FN is an

iterated algorithm whi
h is exe
uted many times on the same input. Due to

a simple stru
ture and easy hardware implementation, Feistel-like networks are

widely used as a 
omponent of various 
ipher designs. Some famous, strong

and used in pra
ti
e FN are the following: MISTY1, Skipja
k, Blow�sh, RC5,

Two�sh (see, for example, [9℄).

Consider a given bit blo
k M that represents a plaintext. Let F denote the

round main fun
tion of FN and K1, . . . ,Kn denote a sequen
e of keys obtained

in some way from the main key K for the rounds 1, . . . , n, respe
tively. We

use the symbol ⊗ for denoting the ex
lusive-OR (xor) operation.

The basi
 operations of FN are spe
i�ed as follows:
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1. break the plaintext blo
k M into two equal length parts denoted by

(L0, R0);

2. for ea
h round i = 0, 1, . . . , n 
ompute:

a) Li+1 = Ri,

b) Ri+1 = Li ⊗ F (Ri,Ki).

Then the 
iphertext sequen
e is (Rn+1, Ln+1).

The stru
ture of FN allows for an easy method of de
ryption. For expla-

nation of the de
ryption pro
edure of FN, let us re
all the basi
 properties of

operation ⊗:

1. x ⊗ x = 0,

2. x ⊗ 0 = x,

3. x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z.

A given 
iphertext (Rn+1, Ln+1) is de
rypted by 
omputing

Ri = Li+1, Li = Ri+1 ⊗ F (Li+1,Ki)

for i = n, n − 1, . . . , 0.

It is easy to see that (L0, R0) is the plaintext again. Observe that we have

the following equations:

Ri+1 ⊗ F (Li+1,Ki) = (Li ⊗ F (Ri,Ki)) ⊗ F (Li,Ki)

= Li ⊗ (F (Ri,Ki) ⊗ F (Li,Ki)) = Li ⊗ 0 = Li.

It should be noted that the power of the 
ipher depends on the 
hoi
e of the

fun
tion F . In pra
ti
e, many di�erent solutions are used in this 
ase. In

the next se
tions we investigate four of them: the xor fun
tion, bits rotation,

permutation, and S−box.

3. Boolean en
oding for 
ryptanalysis

This se
tion presents a dire
t Boolean en
oding of FN versions with di�erent

fun
tions F . As it was mentioned above, FN 
onstitutes the basi
 stru
ture

for many well respe
ted symmetri
 
iphers. Hen
e, its Boolean en
oding will

be helpful in the SAT-based 
ryptanalysis whi
h we want to pursue in the

future.

For our explanation we 
onsider FN with a 64-bit blo
k of a plaintext and

a 32-bit key. Let p1, . . . , p64, k1, . . . , k32 and c1, . . . , c64 be the propositional
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variables representing a plaintext, a key, and a 
iphertext, respe
tively. Ob-

serve that following the Feistel algorithm for the �rst, left half of a plaintext

we have:
32∧

i=1

(ci ⇔ pi+32).

It is easy to see that for the se
ond, right half of a plaintext we have:

32∧

i=1

(ci ⇔ (pi ⊗ F (ki, pi+32)).

Hen
e the en
oding formula for one round of FN is as follows:

Φ1
Feistel :

32∧

i=1

(ci ⇔ pi+32) ∧

32∧

i=1

(ci ⇔ (pi ⊗ F (ki, pi+32)).

In the 
ase of t rounds of FN we have the following: Let (p1
1, . . . , p1

64),
(k1, . . . , k32) be a plaintext and a key ve
tors of variables, respe
tively. By

(pj
1, . . . , p

j
64) and (ci

1, . . . , ci
64) we des
ribe the ve
tors of variables represent-

ing input of the jth round for j = 2, . . . , t and output of the ith round for

i = 1, . . . , t − 1. We denote by (ct
1, . . . , ct

64) the variables of a 
ipher ve
tor

after the tth round.

The formula whi
h en
odes the whole tth round of a Feistel Network is as

follows:

Φt
F eistel :

32∧

i=1

t∧

s=1

(cs
i ⇔ ps

i+32) ∧

32∧

i=1

t∧

s=1

[cs
i+32 ⇔ (ps

i ⊗ F (ki, p
s
i+32))] ∧

∧

64∧

i=1

t−1∧

s=1

(ps+1
i ⇔ cs

i ).

Observe that the last part of Φt
F eistel states that the outputs from the sth

round are the inputs of the (s + 1)th round.

As we 
an see, the obtained formula is a 
onjun
tion of ordinary, or rather

simple, equivalen
es. This is important from the viewpoint of translating into

CNF. The se
ond advantage of this des
ription is that we 
an automati
ally

generate the formula for many investigated rounds.

It is well known that the se
urity of FN 
ipher depends on the fun
tion

F . In our investigation, as a simple instantiation of the fun
tion F , we �rstly

use the fun
tion xor, denoted as before without any other 
hanges of the used
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bits. In this 
ase we obtain the following formula that en
odes the fun
tion F

in the 
onsidered 
ipher:

F (ki, p
s
i+32) ⇔ (ki ⊗ ps

i+32).

The se
ond 
onsidered approa
h is adding the rotation of key's bits into

F . If we use one right rotation for one round of FN, we arrive at the following

formula:

F (ki, p
s
i+32) ⇔ (ki⊕s ⊗ ps

i+32),

where ⊕ denotes + modulo 32.
The third example presents some permutation in the fun
tion F . In this

work we 
onsider the PC permutation � one of permutations used in the DES


ipher [9℄. In this 
ase we get the following formula:

F (ki, p
s
i+32) ⇔ (ki ⊗ ps

PC(i)⊕32).

The last, most powerfull, 
onsidered modi�
ation of the fun
tion F is

adding the S−box into F . Like before, we use the �rst S−box used in DES


ipher [9℄. Firstly, we in
rease the length of the blo
k half from 32 to 48 by

repeating the proper bits like in the DES algorithm. Observe that ea
h of

S−boxes of this type is the matrix with four rows and sixteen 
olumns, where

in ea
h row we have one di�erent permutation of numbers belonging to Z16.

These numbers are denoted in binary form as four-tuples of bits. Following

this, we 
an 
onsider ea
h S−box as a fun
tion of the type Sbox : {0, 1}6 →
{0, 1}4.

For simpli
ity, let us denote by x the ve
tor (x1, . . . , x6) and by Sk
box(x)

the kth 
oordinate of the value Sbox(x) for k = 1, 2, 3, 4.
We 
an en
ode the S−box as the following Boolean formula:

ΦSbox
:

∧

x∈{0,1}6

(

6∧

i=1

(¬)1−xiri ⇒

4∧

j=1

(¬)1−S
j

box
(x)qj),

where (r1, . . . , r6) is the input ve
tor of the S−box and (q1, . . . , q4) is the

output one. Additionally, by (¬)0r and (¬)1r we mean r and ¬r, respe
tively.

Using this, we 
an en
ode the S−box used as 256 simple impli
ation. This

number is equal to the size of the S−box matrix. Due to the strongly irregular

and random 
hara
ter of S−boxes, we are sure that this is the simplest method

of their Boolean en
oding. Having them, we 
an en
ode any given number

of rounds of modi�ed FN as a Boolean propositional formula. The next step

of our investigation is applying our 
ryptanalysis pro
edure to the obtained

formulas.
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En
oding En
oding Solving Solving

Rounds Variables Clauses Time Memory Time Memory

(s.) (MB) (s.) (MB)

4 672 9952 0.008 8 0.012 8

8 1248 19808 0.016 8 0.181 9

12 1824 29664 0.021 9 90.74 25

16 2400 39520 0.028 9 11370.5 231

Table 1: Experimental results with S−box.

4. Cryptanalysis pro
edure and experimental results

The 
ryptanalysis pro
edure used in our investigation pro
eeds as follows:

1) en
ode a single round of the 
ipher 
onsidered as a Boolean propositional

formula;

2) generate automati
ally the formula en
oding an iterated desired number

of rounds;

3) 
onvert the obtained formula into the CNF form;

4) (randomly) 
hoose a plaintext and the key ve
tor as the 0, 1 valuation

of the variables representing them in the formula;

5) insert the 
hosen valuation into the formula;

6) 
al
ulate the 
orresponding 
iphertext using an appropriate key and

insert it into the formula;

7) run some SAT-solver to �nd a satisfying valuation, in
luding a valuation

of the key variables.

To test how the SAT based 
ryptanalysis works for the fun
tions men-

tioned above we have used the previously outlined pro
edure for four di�erent

number of rounds of a modi�ed version of the FN: 4, 8, 12, and 16. The

obtained results show that the SAT based 
ryptanalysis is similar to other

methods of 
ryptanalysis. The SAT based 
ryptanalysis pro
eeds along very

well with simple fun
tions su
h as xor, rotations, and permutations. The re-

sults obtained for these features show a stri
tly linear relationship to re
eive

the key from the known plaintext 
iphertext pair with in
reasing the number

of iterations of the algorithm.

In the 
ase of adding the S−box into the fun
tion F we obtain results

that show an exponential relation to re
eiving the key with in
reasing the

number of iterations of the algorithm. We 
an see these results in Table 1.
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In this Table we show the number of variables and 
lauses of the en
oding

formula obtained for proper iterations of FN, time of generating the formula

and time of sear
hing key satis�able valuation (break the key).

The 
omputer used to perform the experiments was equipped with the

pro
essor Intel Pentium D (3000 MHz), 2 GB main memory, the operating

system Linux, and the SAT-solver MiniSat.

5. Con
lusion and the future work

In this paper we have shown how the SAT based 
ryptanalysis works for break-

ing some modi�ed versions of Feistel Network. We have investigated four dif-

ferent main fun
tions of FN using the xor fun
tion, bits rotation, permutation,

and S−box. The obtained results show that this type of 
ryptanalysis pro
eeds

well with the 
iphers with the xor fun
tion, bits rotation, and permutation.

Using the S−box in 
ipher algorithm in
reases 
omputational 
omplexity of

this type 
ryptanalysis into an exponential one. The next step of our work will


onsist in 
hoosing some of the 
iphers used in pra
ti
e that have fun
tions

simply from the SAT based 
ryptanalysis and trying to break them. We hope

that this investigation will be helpfull in 
hoosing su
h 
iphers. We are sure

that the Kazumi 
ipher will be a good example for our work. Clearly, the

su

ess of our method depends on �nding a 
ipher whi
h 
an be broken.
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