PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and electrical properties of Nb-doped Bi7Ti4.5W0.5O21 intergrowth piezoelectric ceramics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Właściwości strukturalne i elektryczne piezoelektrycznej przerostowo uwarstwionej ceramiki Bi7Ti4,5W0,5O21 domieszkowej Nb
Języki publikacji
EN
Abstrakty
EN
New layer-structured lead-free piezoelectric ceramics Bi7Ti4.5-xW0.5NbxO21 (BTW-BIT-xNb) (0.00 ≤ x ≤ 0.50) with high Curie temperature TC (up to 690 ℃) have great potential for high temperature applications. However, this material system receives far less attention by researchers due to its poor piezoelectric performance. In the present study, the crystal structure, microstructure and electrical properties of samples with different content of Nb were studied detailedly. The structural characterization by XRD patterns Rietveld refinements and Raman scattering analysis shows that Nb5+ substituted for B-site Ti4+ ion located in the pseudo perovskite blocks and enhanced the orthorhombic distortion, leading to the increasing Curie temperature in the range of 692-762 ℃. The substitution of Nb5+ for Ti4+ acts as donor doping, which effectually reduces the amount of oxygen vacancies, and consequently lowers dielectric loss tgδ. The piezoelectric properties of Nb-doped samples were improved with a maximum piezoelectric constant d33 of 14.3 pC/N obtained in BTW-BIT-0.05Nb sample, which is approximately double that of pure BTW-BIT (~7.3 pC/N). Above results reveal that Nb doped BTW-BIT ceramic system overcomes the difficult coordination between piezoelectric performances and Curie temperature, and realizes the common enhancement of piezoelectric performances and Curie temperature, which is of great value for promoting the practical application of high-temperature piezoelectric ceramics
PL
Nowa bezołowiowa ceramika piezoelektryczna o strukturze warstwowej Bi7Ti4,5-xW0,5NbxO21 (BTW-BIT-xNb) (0,00 ≤ x ≤ 0,50) z wysoką temperaturą Curie TC (do 690 ℃) ma ogromny potencjał do zastosowań w wysokich temperaturach. Jednak ten system materiałowy cieszy się znacznie mniejszym zainteresowaniem ze względu na słabą wydajność piezoelektryczną. W niniejszym badaniu szczegółowo zbadano strukturę krystaliczną, mikrostrukturę i właściwości elektryczne próbek o różnej zawartości Nb. Charakterystyka strukturalna za pomocą analizy Rietvelda dyfraktogramów rentgenowskich i analiza rozpraszania Ramana pokazują, że Nb5+ zastąpił jon Ti4+ w miejscu B znajdujący się w blokach pseudoperowskitu i zwiększył zniekształcenie rombowe, prowadząc do wzrostu temperatury Curie w zakresie 692-762 ℃. Zastąpienie Ti4+ przez Nb5+ działa jak domieszkowanie donorowe, co skutecznie zmniejsza ilość wakancji tlenowych, a tym samym obniża straty dielektryczne tanδ. Właściwości piezoelektryczne próbek domieszkowanych Nb zostały poprawione dzięki maksymalnej stałej piezoelektrycznej d33 wynoszącej 14,3 pC/N, uzyskanej w próbce BTW-BIT-0,05Nb, która jest w przybliżeniu dwukrotnie większa niż czystej BTW-BIT (~7,3 pC/N). Powyższe wyniki pokazują, że system ceramiczny BTW-BIT z domieszką Nb przezwycięża trudne koordynowanie wydajności piezoelektrycznej z temperaturą Curie i realizuje równoczesne polepszenie właściwości piezoelektrycznych i temperatury Curie, co ma wielkie znaczenie dla promowania praktycznego zastosowania wysokotemperaturowej ceramiki piezoelektrycznej
Rocznik
Strony
341--349
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
autor
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
autor
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
autor
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
autor
  • Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
Bibliografia
  • [1] Zhang, S., Yu, F.: Piezoelectric Materials for High Temperature Sensors, J. Am. Ceram. Soc., 94, 10, (2011), 3153-3170, DOI: 10.1111/j.1551-2916.2011.04792.x.
  • [2] Yuan, J., Nie, R., Chen, Q., et al.: Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution, J. Alloys Compd., 785, (2019), 475-483, DOI: 10.1016/j.jallcom.2019.01.210.
  • [3] Zhang, F., Wahyudi, O., Liu, Z., et al.: Preparation and electrical properties of a new-type intergrowth bismuth layer-structured (Bi3TiNbO9)1(Bi4Ti3O12)2 ceramics, J. Alloys Compd., 753, (2018), 54-59, DOI: 10.1016/j.jallcom.2018.04.134.
  • [4] Wang, P., Jiang, X., Chen, C., et al.: Electrical and photoluminescence properties of Sm3+ doped Na0. 5La0. 5Bi8-xSmxTi7O27 ceramics, Ceram. Int., 44, 2, (2018), 1448-1454, DOI: 10.1016/j.ceramint.2017.10.030.
  • [5] Shao, C., Lu, Y., Wang, D., et al.: Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics, J. Eur. Ceram. Soc., 32, 14, (2012), 3781-3789, DOI: 10.1016/j.jeurceramsoc.2012.04.048.
  • [6] Yan, H., Zhang, H., Zhang, Z., et al.: B-site donor and acceptor doped Aurivillius phase Bi3NbTiO9 ceramics, J. Eur. Ceram. Soc., 26, 13, (2006), 2785-2792, DOI: 10.1016/j.jeurceramsoc.2005.07.056.
  • [7] Zhang, Y., Li, J., Chai, X., et al.: Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics, J. Appl. Phys., 121, 12, (2017), 124102, DOI: 10.1063/1.4979096.
  • [8] Noguchi, Y., Yamamoto, K., Kitanaka, Y., et al.: Effects of Mn doping on the polarization and leakage current properties in Bi4Ti3O12 single crystals, J. Eur. Ceram. Soc., 27, 13-15, (2007), 4081-4084, DOI: 10.1016/j.jeurceramsoc.2007.02.104.
  • [9] Tang, Y., Shen, Z. Y., Du, Q., et al.: Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics, J. Eur. Ceram. Soc., 38, 16, (2018), 5348-5353, DOI: 10.1016/j.jeurceramsoc.2018.08.025.
  • [10] Luo S, Noguchi Y, Miyayama M, et al. Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system, Mater. Res. Bull., 36, 3-4, (2001), 531-540, DOI: 10.1016/S0025-5408(01)00516-5.
  • [11] Jiang, Y., Jiang, X., Chen, C., et al. Structural and electrical properties of La3+-doped Na0.5 Bi4.5Ti4O15-Bi4Ti3O12, inter-growth high temperature piezoceramics, Ceram. Int., 43, 8, (2017), 6446-6452, DOI: 10.1016/j.ceramint.2017.02.059.
  • [12] Chu, F., Damjanovic, D., Steiner, O., et al.: Piezoelectricity and Phase Transitions of the Mixed‐Layer Bismuth Titanate Niobate Bi7Ti4NbO21, J. Am. Ceram. Soc., 78, 11, (2010), 3142-3144, DOI: 10.1111/j.1151-2916.1995.tb09099.x.
  • [13] Cai, K., Deng, P., Wang, Y., et al.: Bismuth layered ceramic solid solution with high temperature piezoelectricity endurance and low sintering temperature, Sensors and Actuators A: Phys., 261, (2017), 311-316, DOI: 10.1016/j.sna.2017.04.027.
  • [14] Wang, W., Shan, D., Sun, J. B., et al.: Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth, J. Appl. Phys., 103, 4, (2008), 044102, DOI: 10.1063/1.2838486.
  • [15] Jardiel, T., Caballero, A. C., Villegas, M.: Electrical properties in WO3 doped Bi4Ti3O12 materials, J. Eur. Ceram. Soc., 27, 13-15, (2007), 4115-4119, DOI: 10.1063/1.2838486.
  • [16] Hao, H., Liu, H., Ouyang, S.: Structure and ferroelectric property of Nb-doped SrBi4Ti4O15 ceramics, J. Electroceram., 22, 4, (2009), 357-362, DOI: 10.1007/s10832-007-9180-9.
  • [17] Chakrabarti, A., Bera, J.: Structure and relaxor behavior of BaBi4Ti4-xZrxO15 ceramics, Current Appl. Phys., 10, 2, (2010), 574-579, DOI: 10.1016/j.cap.2009.07.027.
  • [18] He, X., Wang, B., Fu, X., et al.: Structural, electrical and piezoelectric properties of V-, Nb- and W-substituted CaBi4Ti4O15 ceramics, J. Mater. Sci.: Mater. Electron., 25, 8, (2014), 3396-3402, DOI: 10.1007/s10854-014-2031-y.
  • [19] Prasetyo, A., Mihailova, B., Suendo, V., et al.: Raman scattering study of the effect of A-and B-site substitution on the room-temperature structure of ABi4Ti4O15, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 196, 1, (2017), 012041, DOI: 10.1088/1757-899X/196/1/012041.
  • [20] Prasetyo, A., Mihailova, B., Suendo, V., et al.: Structural transformations in Pb1−xBi4+xTi4−xMnxO15 (x=0.2 and 0.4): a Raman scattering study, J. Raman Spectr., 48, 2, (2017), 292-297, DOI: 10.1002/jrs.5030.
  • [21] Graves, P. R., Hua, G., Myhra, S., et al. The Raman Modes of the Aurivillius Phases: Temperature and Polarization Dependence, J. Solid State Chem., 114, 1, (1995), 112-122, DOI: 10.1006/jssc.1995.1017.
  • [22] Jiang, X. P., Jiang, X. A., Chen, C., et al.: Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics, J. Phys. D App. Phys., 49, 12, (2016), 125101, DOI: 10.1088/0022-3727/49/12/125101.
  • [23] Liu, J., Zou, G., Jin, Y.: Raman scattering study of Na0.5Bi4.5Ti4O15 and its solid solutions, J. Phys. Chem. Solids, 57, 11, (1996), 1653–1658, DOI: 10.1016/0022-3697(96)00042-X.
  • [24] Hao, H., Liu, H. X., Cao, M. H., et al.: Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy, App. Phys. A, 85, 1, (2006), 69-73, DOI: 10.1007/s00339-006-3651-8.
  • [25] Long, C., Fan, H., Li, M., et al.: Effect of lanthanum and tungsten co-substitution on the structure and properties of new Aurivillius oxides Na0.5La0.5Bi2Nb2-xWxO9, Cryst. Eng. Comm., 14, 21, (2012), 7201-7208, DOI: 10.1039/C2CE25.
  • [26] Tang, Y., Shen, Z. Y., Zhao, X., et al.: Pyroelectric properties of Mn-doped Aurivillius ceramics with different pseudo-perovskite layers, J. Am. Ceram. Soc., 101, 4, (2018), 1592-1597, DOI: 10.1111/jace.15267.
  • [27] Hou, J., Kumar, R. V., Qu, Y., et al.: B-site doping effect on electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics, Scripta Materialia, 61, 6, (2009), 664-667, DOI: 10.1016/j.scriptamat.2009.06.012.
  • [28] Nayak, P., Badapanda, T., Singh, A. K., et al.: Possible relaxation and conduction mechanism in W6+ doped SrBi4Ti4O15 ceramic, Ceram. Int., 43, 5, (2016), 4527-4535, DOI: 10.1016/j.ceramint.2016.12.105.
  • [29] Zhou, Z., Dong, X., Chen, H., et al.: Structural and Electrical Properties of W6+-Doped Bi3TiNbO9 High-Temperature Piezoceramics, J. Am. Ceram. Soc., 89, 5, (2006), 1756-1760, DOI: 10.1111/j.1551-2916.2006.00957.x.
  • [30] Zhang, L., Chu, R., Zhao, S., et al.: Microstructure and electrical properties of niobium doped Bi4Ti3O12 layer-structured piezoelectric ceramics, Mater. Sci. Eng.: B, 116, 1, (2005), 99-103, DOI: 10.1016/j.mseb.2004.09.007.
  • [31] Moon, S. Y., Choi, K. S., Jung, K. W., et al.: Ferroelectric Properties of Substituted Aurivillius Phases SrBi2Nb2-xMxO9 (M= Cr, Mo), Bull. Korean Chem. Soc., 23, 10, (2002), 1463-1482, DOI: 10.5012/bkcs.2002.23.10.1463.
  • [32] Wu, Y., Limmer S. J., Chou, T. P., et al. Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics, J. Mater. Sci. Lett., 21, 12, (2002), 947-949, DOI: 10.1023/A:1016077724427.
  • [33] Ezhilvalavan, S., Xue, J. M., Wang, J.: Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics, Mater. Chem. Phys., 75, 1-3, (2002), 50-55, DOI: 10.1016/S0254-0584(02)00029-9.
  • [34] Jiang, X., Jiang, X., Chen, C., et al.: Photoluminescence, Structural, and Electrical Properties of Erbium-Doped Na0.5Bi4.5Ti4O15 Ferroelectric Ceramics, J. Am. Ceram. Soc., 99, 4, (2016), 1332-1339, DOI: 10.1111/jace.14115.
  • [35] Xin, D., Chen, Q., Wu, J., et al. :Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+and Mn2+Co-doped CaBi4Ti4O15High-Temperature Ceramics, J. Electron. Mater., 45, 7, (2016), 3597-3602, DOI: 10.1007/s11664-016-4554-x.
  • [36] Moure, A., Pardo, L.: Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics, J. Appl. Phys., 97, 8, (2005), 084103, DOI: 10.1063/1.1865313.
  • [37] Chen, H., Guo, X., Cui, Z., et al.: Donor and acceptor doping effects on the electrical conductivity of CaBi2Nb2O9 ceramics, Physica Status Solidi (a), 210, 6, (2013), 1121-1127, DOI: 10.1002/pssa.201228804.
  • [38] Peng, Z., Chen, Q., Chen, Y., et al.: Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi4Ti3O12 piezoelectric ceramics, Mater. Res. Bull., 59, (2014), 125-130, DOI: 10.1016/j.materresbull.2014.07.002.
  • [39] Parida, G., Bera, J.: Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics, Ceram. Int., 40, 2, (2014), 3139-3144, DOI: 10.1016/j.ceramint.2013.09.131.
  • [40] Nayak, P., Badapanda, T., Panigrahi, S.: Dielectric, ferroelectric and conduction behavior of tungsten modified SrBi4Ti4O15 ceramic, J. Mater. Sci.: Mater. Electron., 27, 2, (2016), 1217-1226, DOI: 10.1007/s10854-015-3878-2.
  • [41] Li, W., Gu, J., Song, C., et al.: B-site doping effect on ferroelectric property of bismuth titanate ceramic, J. Appl. Phys., 98, 11, (2005), 114104, DOI: 10.1063/1.2134877.
  • [42] Shimakawa, Y., Kubo, Y., Tauchi, Y., et al.: Crystal and electronic structures of Bi4-xLaxTi3O12 ferroelectric materials, App. Phys. Lett., 79, 17, (2001), 2791-2793, DOI: 10.1063/1.1410877.
  • [43] Shimakawa, Y., Kubo, Y., Nakagawa, Y., et al.: Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9, App. Phys. Lett., 74, 13, (1999), 1904-1906, DOI: 10.1063/1.123708.
  • [44] Shen, Z. Y., Sun, H., Tang, Y., et al.: Enhanced piezoelectric properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics, Mater. Res. Bull., 63, (2015), 129-133, DOI: 10.1016/j.materresbull.2014.11.055.
  • [45] Yuan, J., Nie, R., Chen, Q., et al.: Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution, J. Alloys Compd., 786, (2019), 475-483, DOI: 10.1016/j.jallcom.2019.01.210.
  • [46] Armstrong, R. A., Newnham, R. E.: Bismuth titanate solid solutions, Mater. Res. Bull., 7, 10, (1972), 1025-1034, DOI: 10.1016/0025-5408(72)90154-7.
  • [47] Wu, J., Gao, X., Chen, J., et al.: Review of high temperature piezoelectric materials, devices, and applications, Acta Phys. Sinica, 67, 20, (2018), 207701-1-207701-30, DOI: 10.7498/aps.67.20181091.
  • [48] Li, X., Chen, Z., Sheng, L., et al.: Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics, J. Eur. Ceram. Soc., 39, 6, (2019), 2050-2057, DOI: 10.1016/j.jeurceramsoc.2019.01.042.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ddeecd8-0af1-483c-b659-5d4f5cf9288e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.