PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of content recommendation methods in information services

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza metod rekomendacji treści w serwisach informacyjnych
Języki publikacji
EN
Abstrakty
EN
The object of the research is the process of selecting a content recommendation method in information services. The study's relevance stems from the rapid development of informational and entertainment resources and the increasing volume of data they operate on, thus prompting the utilisation of recommendation systems to maintain user engagement. Considering the different types of content, it is necessary to address the problem of data filtration based on their characteristics and user preferences. To solve this task, we analysed content-based and collaborative filtering methods using various techniques (model-based, memory-based, and hybrid collaborative filtering techniques), knowledge-based filtering, and hybrid filtering methods. Considering each method's advantages and disadvantages, we chose a hybrid method using model-based collaborative filtering and content-based filtering for the future development of our universal recommendation system.
PL
Przedmiotem badań jest proces wyboru metody rekomendacji treści w serwisach informacyjnych. Trafność badania wynika z szybkiego rozwoju zasobów informacyjnych i rozrywkowych oraz wzrostu ilości danych, na których działają, dlatego w celu utrzymania uwagi użytkownika wykorzystywane są systemy rekomendacyjne. Biorąc pod uwagę różne rodzaje treści, konieczne jest rozwiązanie problemu filtrowania danych na podstawie ich charakterystyki i preferencji użytkownika. Aby rozwiązać problem, przeanalizowano metody filtrowania treści, filtrowania kooperacyjnego z wykorzystaniem różnych technik (technika oparta na modelu, technika oparta na pamięci i hybrydowa technika filtrowania kolaboracyjnego), filtrowanie oparte na wiedzy oraz metody filtrowania hybrydowego. Biorąc pod uwagę zalety i wady każdej metody, wybrano metodę hybrydową wykorzystującą filtrowanie kolaboracyjne oparte na modelu i filtrowanie oparte na treści do przyszłego rozwoju proponowanego uniwersalnego systemu rekomendacji.
Rocznik
Strony
105--108
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
  • Sumy State University, Faculty of Electronics and Information Technologies, Department of Information Technology, Sumy, Ukraine
  • Sumy State University, Faculty of Electronics and Information Technologies, Department of Information Technology, Sumy, Ukraine
  • Sumy State University, Faculty of Electronics and Information Technologies, Department of Information Technology, Sumy, Ukraine
  • Sumy State University, Faculty of Electronics and Information Technologies, Department of Information Technology, Sumy, Ukraine
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland
Bibliografia
  • [1] Akbar A., Agarwal P., Obaid A. J.: Recommendation engines-neural embedding to graph-based: Techniques and evaluations. International Journal of Nonlinear Analysis and Applications 13(1), 2022, 2411–2423 [https://doi.org/10.22075/IJNAA.2022.5941].
  • [2] Aldossary A.: Recommender Systems Principles and methods in Web 2 Applications An analytical view of the filters used in YouTube. Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publication (MECSJ), 37, 2020.
  • [3] Ameen A.: Knowledge based Recommendation System in Semantic Web-A Survey. International Journal of Computer Applications 182(43), 2019, 20–25.
  • [4] Bertini M. et al.: Keeping up with the Influencers: Improving User Recommendation in Instagram using Visual Content. UMAP 2020 Adjunct – Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, 2020, 29–34 [https://doi.org/10.1145/3386392.3397594].
  • [5] Chu W. T., Tsai Y. L.: A hybrid recommendation system considering visual information for predicting favorite restaurants. World Wide Web 20(6), 2017, 1313–1331 [https://doi.org/10.1007/S11280-017-0437-1/METRICS].
  • [6] Gohari F. S., Tarokh M. J.: Classification and Comparison of the Hybrid Collaborative Filtering Systems. International Journal of Research in Industrial Engineering 6(2), 2017, 129–148 [https://doi.org/10.22105/RIEJ.2017.49158].
  • [7] Korotaev A., Lyadova L.: Method for the development of recommendation systems, customizable to domains, with deep GRU network. Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management – IC3K 2018, 2018, 231–236 [https://doi.org/10.5220/0006933302310236].
  • [8] Kwan C., Koh’s M. Q., Jasser M. B.: A Comparison Study Between Content-Based and Popularity-Based Filtering via Implementing a Book Recommendation System. International Journal Of Advanced Research In Engineering & Technology 11(12), 2020, 1121–1135 [https://www.researchgate.net/publication/348190964_A_Comparison_Study_Between_Content-Based_and_Popularity-Based_Filtering_via_Implementing_a_ Book_Recommendation_System] (available: 10.05.2016)
  • [9] Madathil M.: Music Recommendation System Spotify-Collaborative Filtering Mithun Madathil, 2017.
  • [10] Mohammed Al Mani I. A.: Collaborative filtering recommendation system: Comparison study (M.Sc. Thesis, Altinbaş University). 2018. [http://openaccess.altinbas.edu.tr/xmlui/handle/20.500.12939/1724] (available: 10.05.2016).
  • [11] Mustafa N. et al.: Collaborative filtering: Techniques and applications. Proceedings of International Conference on Communication, Control, Computing and Electronics Engineering – ICCCCEE 2017 [https://doi.org/10.1109/ICCCCEE.2017.7867668].
  • [12] Naumov M. et al.: Deep Learning Recommendation Model for Personalization and Recommendation Systems. 2019.
  • [13] Ni X. et al.: Feature selection for Facebook feed ranking system via a group-sparsity-regularized training algorithm. Proceedings of International Conference on Information and Knowledge Management, 2019, 2085–2088 [https://doi.org/10.1145/3357384.3358114].
  • [14] Nilashi M., Ibrahim O., Bagherifard K.: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Systems with Applications 92, 2018, 507–520 [https://doi.org/10.1016/J.ESWA.2017.09.058].
  • [15] Pajkovic N.: Algorithms and taste-making: Exposing the Netflix Recommender System’s operational logics. Convergence 28(1), 2022, 214–235 [https://doi.org/10.1177/13548565211014464].
  • [16] Parfenenko Yu., Kovtun A., Verbytska A.: Recommended information system for video search. Scientific journal "Transactions of Kremenchuk Mykhailo Ostrohradskyi National University" 5(118), 2019, 97–102 [https://doi.org/10.30929/1995-0519.2019.5.97-102].
  • [17] Patil M., Brid S., Dhebar S.: Comparison Of Different Music Recommendation System Algorithms. International Journal of Engineering Applied Sciences and Technology 5 (6), 2020 [https://doi.org/10.33564/IJEAST.2020.v05i06.036].
  • [18] Raghuwanshi S. K., Pateriya R. K.: Recommendation systems: Techniques, challenges, application, and evaluation. Advances in Intelligent Systems and Computing 817, 2019, 151–164 [https://doi.org/10.1007/978-981-13-1595-4_12/COVER].
  • [19] Ranjan A. A. et al.: An Approach for Netflix Recommendation System using Singular Value Decomposition. An International Research Journal 10(4), 2019, 774–779 [https://doi.org/10.29055/jcms/1063].
  • [20] Shahbazi Z., Byun Y.-C.: Improving the Product Recommendation System based-on Customer Interest for Online Shopping Using Deep Reinforcement Learning. Soft Computing and Machine Intelligence Journal 1(1), 2021 [https://doi.org/10.22995/scmi.2021.1.1.02].
  • [21] Shuaibi A.: Predicting the Popularity of Reddit Posts. 2019.
  • [22] Wilhelm M. et al.: Practical Diversified Recommendations on YouTube with Determinantal Point Processes. ACM Reference Format: Gillenwater, 2018. [https://doi.org/10.1145/3269206.3272018].
  • [23] Zarzour H. et al.: A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques. 9th International Conference on Information and Communication Systems – ICICS 2018, January 2018, 102–106 [https://doi.org/10.1109/IACS.2018.8355449].
  • [24] Mashkovskyi S.: Latent-semantic analysis, social networks and non-structured data: interaction method. Visnyk Universytetu "Ukraina" 2(23), 2019 [https://doi.org/10.36994/2707-4110-2019-2-23-29].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dddc541-0d06-4daf-bc92-031cdc7e7281
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.